scanning tunneling microscopy

扫描隧道显微镜
  • 文章类型: Journal Article
    Nanowelding是一种自下而上的技术,用于创建超出光刻方法精度的定制设计的纳米结构和器件。这里,报道了一种新技术,该技术基于单层和双层SnSe纳米片与石墨烯衬底之间的范德华界面处的各向异性润滑性,以在焊接过程中实现对晶体取向和界面的精确控制。生长的SnSe单层和双层纳米板与石墨烯的扶手椅方向相称,但缺乏沿石墨烯的之字形方向的相称性,导致沿着该方向的摩擦减少和类似于轨道的,1D运动,允许以高精度连接纳米板。这边,在室温下,通过扫描隧道显微镜的尖端操纵横向尺寸为30-100nm的分子束外延生长的SnSe纳米片。随后将原位退火应用于与纳米板接触的焊缝,而在界面处没有原子缺陷。该技术可以推广到具有各向异性润滑性的任何范德华界面,并且对于构建复杂的量子器件非常有希望,如场效应晶体管,量子干涉器件,横向隧道结,和固态量子比特。
    Nanowelding is a bottom-up technique to create custom-designed nanostructures and devices beyond the precision of lithographic methods. Here, a new technique is reported based on anisotropic lubricity at the van der Waals interface between monolayer and bilayer SnSe nanoplates and a graphene substrate to achieve precise control of the crystal orientation and the interface during the welding process. As-grown SnSe monolayer and bilayer nanoplates are commensurate with graphene\'s armchair direction but lack commensuration along graphene\'s zigzag direction, resulting in a reduced friction along that direction and a rail-like, 1D movement that permits joining nanoplates with high precision. This way, molecular beam epitaxially grown SnSe nanoplates of lateral sizes 30-100 nm are manipulated by the tip of a scanning tunneling microscope at room temperature. In situ annealing is applied afterward to weld contacting nanoplates without atomic defects at the interface. This technique can be generalized to any van der Waals interfaces with anisotropic lubricity and is highly promising for the construction of complex quantum devices, such as field effect transistors, quantum interference devices, lateral tunneling junctions, and solid-state qubits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    拓扑材料中量子态的独特自旋纹理支撑了许多提出的自旋电子应用。然而,如此巨大潜力的实现受到扰动的阻碍,如杂质和缺陷施加的温度和局部场,这可能会使有希望的量子态无法控制。这里,我们报告了室温扫描隧道显微镜/光谱学观察Rashba状态和拓扑表面状态之间的相互作用,这显示了沿薄膜层厚度可控的阶梯边缘的局部电子结构。第一原理理论计算阐明了鲁棒的Rashba状态与沿动量空间中具有特征性自旋纹理的表面台阶的拓扑表面状态共存。此外,可以通过减小拓扑绝缘体Bi2Se3的厚度来关闭Rashba边缘状态,以支持它们与杂化拓扑表面状态的相互作用。该研究揭示了室温下自旋纹理的操纵机制,加强薄膜技术控制量子态的必要性。
    The unique spin texture of quantum states in topological materials underpins many proposed spintronic applications. However, realizations of such great potential are stymied by perturbations, such as temperature and local fields imposed by impurities and defects, that can render a promising quantum state uncontrollable. Here, we report room-temperature scanning tunneling microscopy/spectroscopy observation of interaction between Rashba states and topological surface states, which manifests local electronic structure along step edges controllable by the layer thickness of thin films. The first-principles theoretical calculation elucidates the robust Rashba states coexisting with topological surface states along the surface steps with characteristic spin textures in momentum space. Furthermore, the Rashba edge states can be switched off by reducing the thickness of a topological insulator Bi2Se3 to bolster their interaction with the hybridized topological surface states. The study unveils a manipulating mechanism of the spin textures at room temperature, reinforcing the necessity of thin film technology in controlling the quantum states.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多晶型物工程涉及通过受控的结构修饰来操纵材料特性,并且是用于创建独特的二维过渡金属二硫属化物(TMDC)纳米器件的候选技术。尽管承诺,磁性TMDC单层的多晶型物工程尚未得到证实。在这里,我们通过分子束外延生长FeSe2单层,并发现它们对磁性多晶型物工程有很大的希望。使用扫描隧道显微镜(STM)和光谱学(STS),我们发现FeSe2单层在5K时主要表现出1T的结构多晶型。从STM尖端施加电压脉冲会导致局部,从1T阶段到1T阶段的可逆过渡。密度泛函理论计算表明,这种单层结构相变伴随着从反铁磁结构到铁磁结构的磁转变。这些结果为通过多晶型物工程创建具有TMDC单层的功能性磁性设备开辟了新的可能性。
    Polymorph engineering involves the manipulation of material properties through controlled structural modification and is a candidate technique for creating unique two-dimensional transition metal dichalcogenide (TMDC) nanodevices. Despite its promise, polymorph engineering of magnetic TMDC monolayers has not yet been demonstrated. Here we grow FeSe2 monolayers via molecular beam epitaxy and find that they have great promise for magnetic polymorph engineering. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we find that FeSe2 monolayers predominantly display a 1T\' structural polymorph at 5 K. Application of voltage pulses from an STM tip causes a local, reversible transition from the 1T\' phase to the 1T phase. Density functional theory calculations suggest that this single-layer structural phase transition is accompanied by a magnetic transition from an antiferromagnetic to a ferromagnetic configuration. These results open new possibilities for creating functional magnetic devices with TMDC monolayers via polymorph engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蜂窝晶格是基本的二维(2D)网络,其产生令人惊讶的丰富电子特性。虽然它扩展到2D超分子组装在概念上很有吸引力,由于弱的分子间耦合和支撑衬底的强烈影响,其实现并不简单。这里,我们证明了具有吩嗪部分的三烯衍生物的应用,Trip-Phz,由于其强大的分子间π-π煎饼键合和非平面几何形状,解决了这个问题。我们的扫描隧道显微镜(STM)测量表明,Trip-Phz分子在Ag(111)表面上自组装,形成了手性和相称的蜂窝晶格。电子,该网络可以被视为蜂窝和kagome晶格的混合。通过总密度泛函理论(DFT)计算再现了由简单的紧密结合模型预测的狄拉克和平坦带,突出的保护分子带从Ag(111)衬底。目前的工作提供了一种合理的途径,用于创建可以同时容纳原始狄拉克和平坦带的手性2D超分子。
    The honeycomb lattice is a fundamental two-dimensional (2D) network that gives rise to surprisingly rich electronic properties. While its expansion to 2D supramolecular assembly is conceptually appealing, its realization is not straightforward because of weak intermolecular coupling and the strong influence of a supporting substrate. Here, we show that the application of a triptycene derivative with phenazine moieties, Trip-Phz, solves this problem due to its strong intermolecular π-π pancake bonding and nonplanar geometry. Our scanning tunneling microscopy (STM) measurements demonstrate that Trip-Phz molecules self-assemble on a Ag(111) surface to form chiral and commensurate honeycomb lattices. Electronically, the network can be viewed as a hybrid of honeycomb and kagome lattices. The Dirac and flat bands predicted by a simple tight-binding model are reproduced by total density functional theory (DFT) calculations, highlighting the protection of the molecular bands from the Ag(111) substrate. The present work offers a rational route for creating chiral 2D supramolecules that can simultaneously accommodate pristine Dirac and flat bands.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    卤素的水合作用因其与水淡化和生化反应密切相关而得到了广泛的研究。在这项工作中,通过扫描隧道显微镜和X射线光电子能谱的组合,我们通过Au(111)表面上的Eley-Rideal过程探索了碘的水合过程。此外,还研究了以NiPc自组装网络为模板的碘的水合过程,其中碘在室温下的逐步水合可以在Au(111)上看到。
    The hydration of halogens has been widely researched because of its close relation with the water desalination and biochemical reactions. In this work, by a combination of scanning tunneling microscopy and X-ray photoelectron spectroscopy, we have explored the hydration process of iodine via the Eley-Rideal process on the Au(111) surface. Moreover, the hydration process of iodine with the presence of the NiPc self-assembled network as a template has also been investigated, where the stepwise hydration of iodine at room temperature can be visualized on Au(111).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    操纵平带简并从而获得相关的绝缘相一直是在莫尔系统中实现奇异量子现象的理想途径。为了实现这一目标,严格要求微调的扭转角和大量的位移场(D)。这里,我们报告了我们的扫描隧道显微镜(STM)通过装饰尖端在扭曲的单层双层石墨烯中达到这些相关的绝缘状态的工作。它充当当地的顶门,导致增强的局部D,并使我们能够完全解除平带的8倍简并性。借助这种技术,我们进一步将相关绝缘状态扩展为更宽容的扭曲角,该扭曲角降至0.92°。此外,实现了空穴掺杂体系中的相关绝缘相。我们的尖端装饰方法使我们能够将STM研究与扭曲莫尔系统中相关相的高位移场集成在一起。
    Manipulating the flat band degeneracy and thus getting the correlated insulating phases has been an ideal thread for realizing the exotic quantum phenomenon in the moiré system. To achieve this goal, the delicately tuned twist angle and a substantial displacement field (D) are rigorously requested. Here, we report our scanning tunneling microscope (STM) work on reaching these correlated insulating states in twisted monolayer-bilayer graphene through a decorated tip. It acts as a local top gate, leading to an enhanced local D, and enables us to fully lift the 8-fold degeneracy of the flat bands. With the aid of this technique, we further expand the correlated insulating states into a more tolerant twist angle that is down to 0.92°. Moreover, the correlated insulating phases in the hole-doping regime are realized. Our tip decoration method allows us to integrate the STM study with the high displacement field for the correlated phases in the twisted moiré systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    工程原子尺度缺陷已成为过渡金属二硫属(TMD)材料在下一代电子技术中未来应用的重要策略。因此,提供对电子缺陷相互作用的原子理解并支持缺陷工程开发以改善载流子传输对未来的TMD技术至关重要。在这项工作中,我们利用低温扫描隧道显微镜/光谱学(LT-STM/S)来引发不同类型的缺陷如何基于TMD中的谷间量子准粒子干涉(QPI)产生散射电位工程。此外,量化QPI驻波的能量相关相位变化揭示了取代引起的散射电势与载流子传输机制之间的详细电子缺陷相互作用。通过探索原子级缺陷的固有电子行为,进一步了解缺陷如何影响低维半导体中的载流子传输,我们提供可能有助于TMD未来扩展的潜在技术应用。
    Engineering atomic-scale defects has become an important strategy for the future application of transition metal dichalcogenide (TMD) materials in next-generation electronic technologies. Thus, providing an atomic understanding of the electron-defect interactions and supporting defect engineering development to improve carrier transport is crucial to future TMDs technologies. In this work, we utilize low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/S) to elicit how distinct types of defects bring forth scattering potential engineering based on intervalley quantum quasiparticle interference (QPI) in TMDs. Furthermore, quantifying the energy-dependent phase variation of the QPI standing wave reveals the detailed electron-defect interaction between the substitution-induced scattering potential and the carrier transport mechanism. By exploring the intrinsic electronic behavior of atomic-level defects to further understand how defects affect carrier transport in low-dimensional semiconductors, we offer potential technological applications that may contribute to the future expansion of TMDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在各种衬底上自下而上地制造超分子和自组装已经成为实现用于电子电路或传感器的纳米器件开发前景的极其相关的目标。该领域的一个分支是通过表面上的非共价相互作用驱动的功能分子组分的自组装,例如范德华(vdW)交互,氢键(HB),静电相互作用,等。,允许可以满足纳米工程概念要求的纳米结构的受控设计。在这种情况下,非共价相互作用提供了先前在吸附在表面上的几种分子系统中探索的机会,主要是由于它们的高度方向性,有利于有序结构的形成。在这里,通过将STM(扫描隧道显微镜)与理论计算相结合,我们回顾了一系列研究工作,揭示了在金属表面上配备官能团的分子着陆器驱动的自组装领域中使用的过程。结合这些过程对于研究人员推进由固体表面上的多个非共价相互作用驱动的超分子结构的自组装是必要的。
    The bottom-up fabrication of supramolecular and self-assembly on various substrates has become an extremely relevant goal to achieve prospects in the development of nanodevices for electronic circuitry or sensors. One of the branches of this field is the self-assembly of functional molecular components driven through non-covalent interactions on the surfaces, such as van der Waals (vdW) interactions, hydrogen bonding (HB), electrostatic interactions, etc., allowing the controlled design of nanostructures that can satisfy the requirements of nanoengineering concepts. In this context, non-covalent interactions present opportunities that have been previously explored in several molecular systems adsorbed on surfaces, primarily due to their highly directional nature which facilitates the formation of well-ordered structures. Herein, we review a series of research works by combining STM (scanning tunneling microscopy) with theoretical calculations, to reveal the processes used in the area of self-assembly driven by molecule Landers equipped with functional groups on the metallic surfaces. Combining these processes is necessary for researchers to advance the self-assembly of supramolecular architectures driven by multiple non-covalent interactions on solid surfaces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    稀土碲化物化合物EuTe4表现出电荷密度波(CDW)和非常规的热滞后转变。在这里,我们报告了通过使用低温扫描隧道显微镜对EuTe4中的CDW状态进行的全面研究。在4K时观察到两种类型的电荷顺序,包括新发现的纺锤形图案和典型的条纹状图案。作为一个异国情调的收费命令,纺锤形CDW离轴,在77K时几乎看不见,这表明它是在低温下形成的隐藏秩序。根据我们的第一原理计算,我们揭示了所观察到的电子不稳定性的起源。纺锤形电荷顺序源于基于条纹状CDW相的后续过渡。我们的工作表明,多个电荷阶数之间的竞争和合作可以产生奇异的量子相。
    The rare-earth telluride compound EuTe4 exhibits a charge density wave (CDW) and an unconventional thermal hysteresis transition. Herein, we report a comprehensive study of the CDW states in EuTe4 by using low-temperature scanning tunneling microscopy. Two types of charge orders are observed at 4 K, including a newly discovered spindle-shaped pattern and a typical stripe-like pattern. As an exotic charge order, the spindle-shaped CDW is off-axis and barely visible at 77 K, indicating that it is a hidden order developed at low temperature. Based on our first-principles calculations, we reveal the origins of the observed electronic instabilities. The spindle-shaped charge order stems from a subsequent transition based on the stripe-like CDW phase. Our work demonstrates that the competition and cooperation between multiple charge orders can generate exotic quantum phases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们报告了非苯型多环共轭烃的产生,由在4,4位被茚基单元取代的联苯基部分组成,通过尖端诱导化学在超薄氯化钠薄膜上。通过扫描隧道和原子力显微镜进行的单分子表征揭示了具有特殊电子构型的开壳双自由基基态,其中单占据分子轨道(SOMO)的能量低于最高占据分子轨道(HOMO)。
    We report the generation of a nonbenzenoid polycyclic conjugated hydrocarbon, which consists of a biphenyl moiety substituted by indenyl units at the 4,4\' positions, on ultrathin sodium chloride films by tip-induced chemistry. Single-molecule characterization by scanning tunneling and atomic force microscopy reveals an open-shell biradical ground state with a peculiar electronic configuration wherein the singly occupied molecular orbitals (SOMOs) are lower in energy than the highest occupied molecular orbital (HOMO).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号