关键词: Atomic defect engineering Intervalley quasiparticle interference Phase shift Scanning tunneling microscopy Transition metal dichalcogenides

来  源:   DOI:10.1021/acsnano.4c02066   PDF(Pubmed)

Abstract:
Engineering atomic-scale defects has become an important strategy for the future application of transition metal dichalcogenide (TMD) materials in next-generation electronic technologies. Thus, providing an atomic understanding of the electron-defect interactions and supporting defect engineering development to improve carrier transport is crucial to future TMDs technologies. In this work, we utilize low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/S) to elicit how distinct types of defects bring forth scattering potential engineering based on intervalley quantum quasiparticle interference (QPI) in TMDs. Furthermore, quantifying the energy-dependent phase variation of the QPI standing wave reveals the detailed electron-defect interaction between the substitution-induced scattering potential and the carrier transport mechanism. By exploring the intrinsic electronic behavior of atomic-level defects to further understand how defects affect carrier transport in low-dimensional semiconductors, we offer potential technological applications that may contribute to the future expansion of TMDs.
摘要:
工程原子尺度缺陷已成为过渡金属二硫属(TMD)材料在下一代电子技术中未来应用的重要策略。因此,提供对电子缺陷相互作用的原子理解并支持缺陷工程开发以改善载流子传输对未来的TMD技术至关重要。在这项工作中,我们利用低温扫描隧道显微镜/光谱学(LT-STM/S)来引发不同类型的缺陷如何基于TMD中的谷间量子准粒子干涉(QPI)产生散射电位工程。此外,量化QPI驻波的能量相关相位变化揭示了取代引起的散射电势与载流子传输机制之间的详细电子缺陷相互作用。通过探索原子级缺陷的固有电子行为,进一步了解缺陷如何影响低维半导体中的载流子传输,我们提供可能有助于TMD未来扩展的潜在技术应用。
公众号