scanning tunneling microscopy

扫描隧道显微镜
  • 文章类型: Journal Article
    我们通过主动减去由电流-电压特性中的非线性产生的主要电流谐波来增加扫描隧道显微镜(STM)的动态范围,这些谐波可能会在低结阻抗或高增益下使电流前置放大器饱和。余弦激励电压与电流谐波之间的严格相位关系允许使用放置在前置放大器输入处的驱动补偿电容器的位移电流进行出色的消除。直流电流的去除对,并且去除一次谐波只会导致微分电导的刚性偏移,可以通过添加已知的去除电流在数值上进行反转。我们的方法不需要永久更改硬件,而只需要两个相位同步电压源和一个多频锁定放大器即可实现高动态范围的光谱和成像。•有源电力滤波器•动态范围压缩•高增益前置放大器。
    We increase the dynamical range of a scanning tunneling microscope (STM) by actively subtracting dominant current-harmonics generated by nonlinearities in the current-voltage characteristics that could saturate the current preamplifier at low junction impedances or high gains. The strict phase relationship between a cosinusoidal excitation voltage and the current-harmonics allows excellent cancellation using the displacement-current of a driven compensating capacitor placed at the input of the preamplifier. Removal of DC currents has no effect on, and removal of the first harmonic only leads to a rigid shift in differential conductance that can be numerically reversed by adding the known removal current. Our method requires no permanent change of the hardware but only two phase synchronized voltage sources and a multi-frequency lock-in amplifier to enable high dynamic range spectroscopy and imaging. • Active power filter • Dynamic range compression • High gain preamplifier.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于掺杂剂的硅纳米级器件的设计和实现在很大程度上依赖于精确了解磷掺杂剂在其主晶体中的位置。一种潜在的解决方案将扫描隧道显微镜(STM)成像与原子紧密结合模拟相结合,以反向工程掺杂剂坐标。这项工作表明,这种方法可能无法直接扩展到双掺杂剂系统。我们发现,一对耦合的磷掺杂剂的基态(准分子)状态通常不能通过单掺杂剂基态的线性组合来完全解释。尽管激发的单掺杂态的贡献相对较小,它们可导致在从多掺杂剂STM图像确定单个掺杂剂位置时的模糊性。为了克服这一点,我们利用有关掺杂剂对波函数的知识,并提出了一种简单而有效的方案,用于基于STM图像查找双掺杂剂位置。
    The design and implementation of dopant-based silicon nanoscale devices rely heavily on knowing precisely the locations of phosphorous dopants in their host crystal. One potential solution combines scanning tunneling microscopy (STM) imaging with atomistic tight-binding simulations to reverse-engineer dopant coordinates. This work shows that such an approach may not be straightforwardly extended to double-dopant systems. We find that the ground (quasi-molecular) state of a pair of coupled phosphorous dopants often cannot be fully explained by the linear combination of single-dopant ground states. Although the contributions from excited single-dopant states are relatively small, they can lead to ambiguity in determining individual dopant positions from a multi-dopant STM image. To overcome that, we exploit knowledge about dopant-pair wave functions and propose a simple yet effective scheme for finding double-dopant positions based on STM images.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    二维金属有机骨架(2D-MOF)代表一类原子级薄材料,将分子系统的结构可调性与固体的晶体结构特征相结合。有机接头和过渡金属中心之间的强键合会导致离域电子态。然而,目前还不清楚2D-MOFs中的能带结构是如何通过构建块中电子态的耦合而出现的。这里,我们展示了表现出突出的π-共轭的2D-MOF的表面合成。通过实验和理论相结合的方法,我们提供了分层自组装时能带结构形成的直接证据,从金属-有机络合物到共轭二维框架。此外,我们确定了新兴混合态的强大分散性,无论金属支撑类型如何,通过从衬底转移电荷来突出能带结构的可调性。我们的发现鼓励探索2D-MOF中的能带结构工程,以用于电子和光子学的潜在应用。
    Two-dimensional metal-organic frameworks (2D-MOFs) represent a category of atomically thin materials that combine the structural tunability of molecular systems with the crystalline structure characteristic of solids. The strong bonding between the organic linkers and transition metal centers is expected to result in delocalized electronic states. However, it remains largely unknown how the band structure in 2D-MOFs emerges through the coupling of electronic states in the building blocks. Here, we demonstrate the on-surface synthesis of a 2D-MOF exhibiting prominent π-conjugation. Through a combined experimental and theoretical approach, we provide direct evidence of band structure formation upon hierarchical self-assembly, going from metal-organic complexes to a conjugated two-dimensional framework. Additionally, we identify the robustly dispersive nature of the emerging hybrid states, irrespective of the metallic support type, highlighting the tunability of the band structure through charge transfer from the substrate. Our findings encourage the exploration of band-structure engineering in 2D-MOFs for potential applications in electronics and photonics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    卤素的水合作用因其与水淡化和生化反应密切相关而得到了广泛的研究。在这项工作中,通过扫描隧道显微镜和X射线光电子能谱的组合,我们通过Au(111)表面上的Eley-Rideal过程探索了碘的水合过程。此外,还研究了以NiPc自组装网络为模板的碘的水合过程,其中碘在室温下的逐步水合可以在Au(111)上看到。
    The hydration of halogens has been widely researched because of its close relation with the water desalination and biochemical reactions. In this work, by a combination of scanning tunneling microscopy and X-ray photoelectron spectroscopy, we have explored the hydration process of iodine via the Eley-Rideal process on the Au(111) surface. Moreover, the hydration process of iodine with the presence of the NiPc self-assembled network as a template has also been investigated, where the stepwise hydration of iodine at room temperature can be visualized on Au(111).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    工程原子尺度缺陷已成为过渡金属二硫属(TMD)材料在下一代电子技术中未来应用的重要策略。因此,提供对电子缺陷相互作用的原子理解并支持缺陷工程开发以改善载流子传输对未来的TMD技术至关重要。在这项工作中,我们利用低温扫描隧道显微镜/光谱学(LT-STM/S)来引发不同类型的缺陷如何基于TMD中的谷间量子准粒子干涉(QPI)产生散射电位工程。此外,量化QPI驻波的能量相关相位变化揭示了取代引起的散射电势与载流子传输机制之间的详细电子缺陷相互作用。通过探索原子级缺陷的固有电子行为,进一步了解缺陷如何影响低维半导体中的载流子传输,我们提供可能有助于TMD未来扩展的潜在技术应用。
    Engineering atomic-scale defects has become an important strategy for the future application of transition metal dichalcogenide (TMD) materials in next-generation electronic technologies. Thus, providing an atomic understanding of the electron-defect interactions and supporting defect engineering development to improve carrier transport is crucial to future TMDs technologies. In this work, we utilize low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/S) to elicit how distinct types of defects bring forth scattering potential engineering based on intervalley quantum quasiparticle interference (QPI) in TMDs. Furthermore, quantifying the energy-dependent phase variation of the QPI standing wave reveals the detailed electron-defect interaction between the substitution-induced scattering potential and the carrier transport mechanism. By exploring the intrinsic electronic behavior of atomic-level defects to further understand how defects affect carrier transport in low-dimensional semiconductors, we offer potential technological applications that may contribute to the future expansion of TMDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在各种衬底上自下而上地制造超分子和自组装已经成为实现用于电子电路或传感器的纳米器件开发前景的极其相关的目标。该领域的一个分支是通过表面上的非共价相互作用驱动的功能分子组分的自组装,例如范德华(vdW)交互,氢键(HB),静电相互作用,等。,允许可以满足纳米工程概念要求的纳米结构的受控设计。在这种情况下,非共价相互作用提供了先前在吸附在表面上的几种分子系统中探索的机会,主要是由于它们的高度方向性,有利于有序结构的形成。在这里,通过将STM(扫描隧道显微镜)与理论计算相结合,我们回顾了一系列研究工作,揭示了在金属表面上配备官能团的分子着陆器驱动的自组装领域中使用的过程。结合这些过程对于研究人员推进由固体表面上的多个非共价相互作用驱动的超分子结构的自组装是必要的。
    The bottom-up fabrication of supramolecular and self-assembly on various substrates has become an extremely relevant goal to achieve prospects in the development of nanodevices for electronic circuitry or sensors. One of the branches of this field is the self-assembly of functional molecular components driven through non-covalent interactions on the surfaces, such as van der Waals (vdW) interactions, hydrogen bonding (HB), electrostatic interactions, etc., allowing the controlled design of nanostructures that can satisfy the requirements of nanoengineering concepts. In this context, non-covalent interactions present opportunities that have been previously explored in several molecular systems adsorbed on surfaces, primarily due to their highly directional nature which facilitates the formation of well-ordered structures. Herein, we review a series of research works by combining STM (scanning tunneling microscopy) with theoretical calculations, to reveal the processes used in the area of self-assembly driven by molecule Landers equipped with functional groups on the metallic surfaces. Combining these processes is necessary for researchers to advance the self-assembly of supramolecular architectures driven by multiple non-covalent interactions on solid surfaces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们报告了非苯型多环共轭烃的产生,由在4,4位被茚基单元取代的联苯基部分组成,通过尖端诱导化学在超薄氯化钠薄膜上。通过扫描隧道和原子力显微镜进行的单分子表征揭示了具有特殊电子构型的开壳双自由基基态,其中单占据分子轨道(SOMO)的能量低于最高占据分子轨道(HOMO)。
    We report the generation of a nonbenzenoid polycyclic conjugated hydrocarbon, which consists of a biphenyl moiety substituted by indenyl units at the 4,4\' positions, on ultrathin sodium chloride films by tip-induced chemistry. Single-molecule characterization by scanning tunneling and atomic force microscopy reveals an open-shell biradical ground state with a peculiar electronic configuration wherein the singly occupied molecular orbitals (SOMOs) are lower in energy than the highest occupied molecular orbital (HOMO).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尺寸修改在各种应用中起着至关重要的作用,特别是在设备小型化的背景下,产生了新的量子现象。由尺寸修改引起的多体动力学,包括电子-电子,电子-声子,电子-磁振子和电子-等离子体激元耦合,已知显著影响材料的原子和电子性质。通过降低正交CoSe2的维数并使用分子束外延与双层石墨烯形成异质结构,我们通过角度分辨光发射光谱和扫描隧道显微镜测量揭示了两种相变的出现。我们公开了2×1的超结构与费米表面嵌套引起的电荷密度波有关,其特征在于340K的转变温度。此外,观察到基于温度依赖性间隙演化的160K温度下的另一个相变,并通过电子-玻色子耦合引起了重新归一化的电子结构。这些电子和原子修饰的发现,受电子-电子和电子-玻色子相互作用的影响,强调多体物理学在理解非范德瓦尔斯钴硫族化合物和相关异质结构的低维性质中起着重要作用。
    Dimensional modifications play a crucial role in various applications, especially in the context of device miniaturization, giving rise to novel quantum phenomena. The many-body dynamics induced by dimensional modifications, including electron-electron, electron-phonon, electron-magnon and electron-plasmon coupling, are known to significantly affect the atomic and electronic properties of the materials. By reducing the dimensionality of orthorhombic CoSe2 and forming heterostructure with bilayer graphene using molecular beam epitaxy, we unveil the emergence of two types of phase transitions through angle-resolved photoemission spectroscopy and scanning tunneling microscopy measurements. We disclose that the 2 × 1 superstructure is associated with charge density wave induced by Fermi surface nesting, characterized by a transition temperature of 340 K. Additionally, another phase transition at temperature of 160 K based on temperature dependent gap evolution are observed with renormalized electronic structure induced by electron-boson coupling. These discoveries of the electronic and atomic modifications, influenced by electron-electron and electron-boson interactions, underscore that many-body physics play significant roles in understanding low-dimensional properties of non-van der Waals Co-chalcogenides and related heterostructures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用非弹性电子隧道光谱法在Cu(100)上的单分子水平上分析了三聚氰胺及其互变异构体的振动量子。表面互变异构化导致异构体的低能振动光谱明显不同,模式能量的变化和非弹性横截面的变化证明了这一点。空间分辨光谱学揭示了轨道节点平面上的最大信号强度,排除共振非弹性隧穿作为量子激发的潜在机制。将探针-分子分离降低到三聚氰胺氨基与尖端的Cu顶点原子之间形成化学键,会导致具有不同激发能量的猝灭振动光谱。密度泛函和电子传输计算再现了实验结果,并表明量子能量的偏移适用于内部分子弯曲模式。此外,模拟表明,键的形成代表了分子互变异构的有效方式。
    Vibrational quanta of melamine and its tautomer are analyzed at the single-molecule level on Cu(100) with inelastic electron tunneling spectroscopy. The on-surface tautomerization gives rise to markedly different low-energy vibrational spectra of the isomers, as evidenced by a shift in mode energies and a variation in inelastic cross sections. Spatially resolved spectroscopy reveals the maximum signal strength on an orbital nodal plane, excluding resonant inelastic tunneling as the mechanism underlying the quantum excitations. Decreasing the probe-molecule separation down to the formation of a chemical bond between the melamine amino group and the Cu apex atom of the tip leads to a quenched vibrational spectrum with different excitation energies. Density functional and electron transport calculations reproduce the experimental findings and show that the shift in the quantum energies applies to internal molecular bending modes. The simulations moreover suggest that the bond formation represents an efficient manner of tautomerizing the molecule.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    垂直电荷顺序塑造了层状电荷密度波(CDW)材料的电子特性。各种堆叠顺序不可避免地产生具有本体探针无法接近的不同电子结构的纳米级域。这里,使用扫描隧道光谱(STS)和密度泛函理论(DFT)计算分析了块状1T-TaS2的堆积特性。观察到,Mott绝缘域经历了向带状绝缘域的过渡,恢复了CDW的垂直二聚化。此外,覆盖宽露台的STS测量结果揭示了两个不同的带状绝缘域,它们通过带状边缘加宽而区分开来。这些DFT计算表明,莫特绝缘层优选位于地下,在相邻的带绝缘层中形成更宽的带边缘。最终,确认了被认为含有量子自旋液相的埋藏的Mott绝缘层。这些结果解决了有关1T-TaS2中垂直电荷顺序的持续问题,为研究层状CDW材料中的新兴量子现象提供了新的视角。
    Vertical charge order shapes the electronic properties in layered charge density wave (CDW) materials. Various stacking orders inevitably create nanoscale domains with distinct electronic structures inaccessible to bulk probes. Here, the stacking characteristics of bulk 1T-TaS2 are analyzed using scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. It is observed that Mott-insulating domains undergo a transition to band-insulating domains restoring vertical dimerization of the CDWs. Furthermore, STS measurements covering a wide terrace reveal two distinct band insulating domains differentiated by band edge broadening. These DFT calculations reveal that the Mott insulating layers preferably reside on the subsurface, forming broader band edges in the neighboring band insulating layers. Ultimately, buried Mott insulating layers believed to harbor the quantum spin liquid phase are identified. These results resolve persistent issues regarding vertical charge order in 1T-TaS2, providing a new perspective for investigating emergent quantum phenomena in layered CDW materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号