phosphoinositides

磷酸肌醇
  • 文章类型: Journal Article
    病毒刺突蛋白经常突变,但是这些蛋白质中的保守特征通常具有功能重要性,并且可以为规避病毒序列突变影响的抗病毒疗法的开发提供信息。通过分析来自几个病毒家族的大量病毒刺突蛋白序列,我们在它们的胞内结构域中发现了高度保守的模式(>99%)。模式通常由一个或多个与半胱氨酸相邻的碱性氨基酸(精氨酸或赖氨酸)组成,已知其中许多经历酰化。这些模式一般在细胞蛋白中不富集。分子动力学模拟显示来自甲型和乙型流感的血凝素(HA)中的这些保守残基与磷酸肌醇PIP2之间的直接静电和疏水相互作用。超分辨率显微镜显示PIP2和几种相同的病毒蛋白的纳米级共定位。我们提出这些保守的病毒刺突蛋白特征可以与磷酸肌醇如PIP2相互作用的假设。
    Viral spike proteins mutate frequently, but conserved features within these proteins often have functional importance and can inform development of anti-viral therapies which circumvent the effects of viral sequence mutations. Through analysis of large numbers of viral spike protein sequences from several viral families, we found highly (>99%) conserved patterns within their intracellular domains. The patterns generally consist of one or more basic amino acids (arginine or lysine) adjacent to a cysteine, many of which are known to undergo acylation. These patterns were not enriched in cellular proteins in general. Molecular dynamics simulations show direct electrostatic and hydrophobic interactions between these conserved residues in hemagglutinin (HA) from influenza A and B and the phosphoinositide PIP2. Super-resolution microscopy shows nanoscale colocalization of PIP2 and several of the same viral proteins. We propose the hypothesis that these conserved viral spike protein features can interact with phosphoinositides such as PIP2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自噬体的形成介导细胞质物质的螯合是自噬的核心步骤。几种磷酸肌醇,它们是膜上的信号分子,参与自噬。然而,尚不清楚这些磷酸肌醇是否直接作用于自噬体形成的位点,或间接通过调节其他步骤或途径。为了解决这个问题,我们使用了一组磷酸肌醇探针来系统地检查它们在酵母(酿酒酵母)自噬细胞膜上的潜在存在。我们使用在相应的磷酸肌醇产生中缺乏的突变细胞验证了这些探针的特异性。然后,我们检查了饥饿的酵母细胞共表达磷酸肌醇探针和自噬体膜标记物,2Katushka2S-Atg8。我们的数据显示,PtdIns(4,5)P2和PtdIns(3,5)P2主要存在于质膜和液泡膜上,分别。我们仅观察到PtdIns(4)P探针和Atg8之间的偶然共定位,其中一些可能代表自噬小体膜附近的含PtdIns(4)P结构的瞬时通过。相比之下,观察到PtdIns(3)P探针与Atg8的大量共定位。一起来看,我们的数据表明,只有PtdIns(3)P大量存在于自噬体膜上。对于参与自噬的其他磷酸肌醇,它们在自噬体膜上的存在是非常短暂的,或者它们作用于其他细胞膜来调节自噬。
    The formation of autophagosomes mediating the sequestration of cytoplasmic materials is the central step of autophagy. Several phosphoinositides, which are signaling molecules on the membrane, are involved in autophagy. However, it is not always clear whether these phosphoinositides act directly at the site of autophagosome formation, or indirectly via the regulation of other steps or pathways. To address this question, we used a set of phosphoinositide probes to systematically examine their potential presence on autophagosomal membranes in yeast (Saccharomyces cerevisiae). We verified the specificity of these probes using mutant cells deficient in the production of the corresponding phosphoinositides. We then examined starved yeast cells co-expressing a phosphoinositide probe together with an autophagosomal membrane marker, 2Katushka2S-Atg8. Our data revealed that PtdIns(4,5)P2 and PtdIns(3,5)P2 were mainly present on the plasma membrane and vacuolar membrane, respectively. We observed only occasional co-localization between the PtdIns(4)P probe and Atg8, some of which may represent the transient passage of a PtdIns(4)P-containing structure near the autophagosomal membrane. In contrast, substantial colocalization of the PtdIns(3)P probe with Atg8 was observed. Taken together, our data indicate that only PtdIns(3)P is present in a substantial amount on the autophagosomal membrane. For other phosphoinositides involved in autophagy, either their presence on the autophagosomal membrane is very transient, or they act on other cellular membranes to regulate autophagy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Septins是细胞骨架蛋白,它们与膜的相互作用对于它们在各种细胞过程中的作用至关重要。Septin具有对脂质相互作用很重要的多碱性区域(PB1和PB2)。早些时候,我们和其他人强调了septinC末端结构域(CTD)在膜相互作用中的作用。然而,缺乏对这种特征重要的残基/残基组的详细信息。在这项研究中,我们使用PIP试纸和Langmuir单层吸附测定法研究了曼氏血吸虫Septin10(SmSEPT10)的脂质结合谱。我们的发现强调CTD是SmSEPT10中负责脂质相互作用的主要结构域,显示与磷脂酰肌醇磷酸酯的结合。SmSEPT10CTD包含动物和真菌隔膜中存在的保守的多碱性区域(PB3),和Lys(K367)在其推定的两亲螺旋(AH)内,我们证明这对脂质结合很重要。该Lys(K367A)的PB3缺失或突变强烈损害脂质相互作用。值得注意的是,我们观察到缺乏最终43个氨基酸残基的构建体中的AH不足以进行脂质结合。此外,我们通过交联实验研究了SmSEPT10CTD在溶液中形成的均复合物,CD光谱学,SEC-MALS和SEC-SAXS。一起来看,我们的研究定义了SmSEPT10中的脂质结合区,并提供了对隔膜-膜结合的分子基础的见解.这些信息与研究较少的非人隔膜特别相关,比如SmSEPT10。
    Septins are cytoskeletal proteins and their interaction with membranes is crucial for their role in various cellular processes. Septins have polybasic regions (PB1 and PB2) which are important for lipid interaction. Earlier, we and others have highlighted the role of the septin C-terminal domain (CTD) to membrane interaction. However, detailed information on residues/group of residues important for such feature is lacking. In this study, we investigate the lipid-binding profile of Schistosoma mansoni Septin10 (SmSEPT10) using PIP strip and Langmuir monolayer adsorption assays. Our findings highlight the CTD as the primary domain responsible for lipid interaction in SmSEPT10, showing binding to phosphatidylinositol phosphates. SmSEPT10 CTD contains a conserved polybasic region (PB3) present in both animals and fungi septins, and a Lys (K367) within its putative amphipathic helix (AH) that we demonstrate as important for lipid binding. PB3 deletion or mutation of this Lys (K367A) strongly impairs lipid interaction. Remarkably, we observe that the AH within a construct lacking the final 43 amino acid residues is insufficient for lipid binding. Furthermore, we investigate the homocomplex formed by SmSEPT10 CTD in solution by cross-linking experiments, CD spectroscopy, SEC-MALS and SEC-SAXS. Taken together, our studies define the lipid-binding region in SmSEPT10 and offer insights into the molecular basis of septin-membrane binding. This information is particularly relevant for less-studied non-human septins, such as SmSEPT10.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    PtdIns及其磷酸化衍生物,磷酸肌醇,是所有真核细胞中细胞内信号传导的主要途径的生化成分。这些脂质在独特的位置异构体队列方面很少,并且在数量上是大量细胞脂质的次要物种。然而,磷酸肌醇调节一系列不同的生物过程。从这个角度来看,磷酸肌醇依赖性信号通路的扰动越来越被认为是许多人类疾病(包括癌症)的因果基础。虽然磷脂酰肌醇转移蛋白(PITP)不是酶,这些蛋白质是磷酸肌醇信号的生理上重要的调节剂。因此,PITP在整个真核王国中是保守的。尽管它们的生物学重要性,PITPs仍未得到充分研究。在这里,我们回顾了当前有关PITP生物学的信息,主要关注PITP功能紊乱如何破坏关键信号传导/发育通路,以及与哺乳动物中越来越多的病理列表相关.
    PtdIns and its phosphorylated derivatives, the phosphoinositides, are the biochemical components of a major pathway of intracellular signaling in all eukaryotic cells. These lipids are few in terms of cohort of unique positional isomers, and are quantitatively minor species of the bulk cellular lipidome. Nevertheless, phosphoinositides regulate an impressively diverse set of biological processes. It is from that perspective that perturbations in phosphoinositide-dependent signaling pathways are increasingly being recognized as causal foundations of many human diseases - including cancer. Although phosphatidylinositol transfer proteins (PITPs) are not enzymes, these proteins are physiologically significant regulators of phosphoinositide signaling. As such, PITPs are conserved throughout the eukaryotic kingdom. Their biological importance notwithstanding, PITPs remain understudied. Herein, we review current information regarding PITP biology primarily focusing on how derangements in PITP function disrupt key signaling/developmental pathways and are associated with a growing list of pathologies in mammals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    适应性免疫应答包括通过由抗原呈递细胞(APC)表面上的主要组织相容性复合物(MHC)的蛋白质呈递的肽抗原激活T细胞。由于T细胞受体(TCR)与某种肽-MHC复合物有效地相互作用,专门的细胞-细胞连接,免疫突触,形成并伴随着细胞内信号分子的时空模式和功能的变化。在活化的T细胞中的血浆和内膜的细胞质小叶处发生的关键修饰包括影响脂质双层内或附近的蛋白质的结合和分布的脂质开关。这里,我们描述了在这个关键的水/膜界面起作用的两大类脂质开关。磷酸肌醇衍生自磷脂酰肌醇,一种两亲性分子,含有两条脂肪酸链和一个将甘油主链与碳水化合物肌醇桥接的磷酸基团。肌醇环可以通过专用激酶和磷酸盐可变地(去)磷酸化,从而创建定义信号分子的组成和性质的磷酸肌醇特征,分子复合物或整个细胞器。棕榈酰化是指脂肪酸棕榈酸酯与底物蛋白的半胱氨酸残基的可逆连接。DHHC酶,以其活性位点的四个保守氨基酸命名,催化这种翻译后修饰,从而改变蛋白质的分布,膜之间和膜内。T细胞利用这两种类型的分子开关来调整它们的特性以适应需要运动变化的激活过程,运输,分泌和基因表达。
    Adaptive immune responses comprise the activation of T cells by peptide antigens that are presented by proteins of the Major Histocompatibility Complex (MHC) on the surface of an antigen-presenting cell. As a consequence of the T cell receptor interacting productively with a certain peptide-MHC complex, a specialized cell-cell junction known as the immunological synapse forms and is accompanied by changes in the spatiotemporal patterning and function of intracellular signaling molecules. Key modifications occurring at the cytoplasmic leaflet of the plasma and internal membranes in activated T cells comprise lipid switches that affect the binding and distribution of proteins within or near the lipid bilayer. Here, we describe two major classes of lipid switches that act at this critical water/membrane interface. Phosphoinositides are derived from phosphatidylinositol, an amphiphilic molecule that contains two fatty acid chains and a phosphate group that bridges the glycerol backbone to the carbohydrate inositol. The inositol ring can be variably (de-)phosphorylated by dedicated kinases and phosphatases, thereby creating phosphoinositide signatures that define the composition and properties of signaling molecules, molecular complexes, or whole organelles. Palmitoylation refers to the reversible attachment of the fatty acid palmitate to a substrate protein\'s cysteine residue. DHHC enzymes, named after the four conserved amino acids in their active site, catalyze this post-translational modification and thereby change the distribution of proteins at, between, and within membranes. T cells utilize these two types of molecular switches to adjust their properties to an activation process that requires changes in motility, transport, secretion, and gene expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    成肌是一个多步骤的过程,需要对细胞事件进行时空调节,最终导致成肌细胞融合到多核肌管中。对融合机制的最主要见解似乎从昆虫到哺乳动物都是保守的,包括形成足体样突起(PLPs),对创始人细胞产生驱动力。然而,控制这一过程的机制仍然知之甚少。在这项研究中,我们证明MTM1是负责生产磷脂酰肌醇5-磷酸的主要酶,反过来又为PI5P4-激酶α提供燃料,以产生少量的功能性磷脂酰肌醇4,5-双磷酸酯池,该池浓缩在含有支架蛋白Tks5,Dynamin-2和融合蛋白Myomaker的PLP中。总的来说,我们的数据揭示了在调节PLP形成过程中PI-磷酸酶和PI-激酶之间的功能性串扰。
    Myogenesis is a multistep process that requires a spatiotemporal regulation of cell events resulting finally in myoblast fusion into multinucleated myotubes. Most major insights into the mechanisms underlying fusion seem to be conserved from insects to mammals and include the formation of podosome-like protrusions (PLPs) that exert a driving force toward the founder cell. However, the machinery that governs this process remains poorly understood. In this study, we demonstrate that MTM1 is the main enzyme responsible for the production of phosphatidylinositol 5-phosphate, which in turn fuels PI5P 4-kinase α to produce a minor and functional pool of phosphatidylinositol 4,5-bisphosphate that concentrates in PLPs containing the scaffolding protein Tks5, Dynamin-2, and the fusogenic protein Myomaker. Collectively, our data reveal a functional crosstalk between a PI-phosphatase and a PI-kinase in the regulation of PLP formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    磷酸肌醇3-激酶调节许多细胞功能,包括迁移,增长,扩散,细胞存活。早期研究将I类PI3K的抑制等同于磷脂酰肌醇3,4,5-三磷酸(PIP3),但随着时间的推移,人们认识到,这些处理也耗尽了磷脂酰肌醇3,4-二磷酸(PI(3,4)P2)。近年来,使用更好的工具和对其代谢的更好理解已经允许识别PI(3,4)P2的特定作用。这包括响应于生长因子信号传导的PI(3,4)P2的产生和其效应物Akt2的激活。相比之下,PI(3,4)P2的溶酶体池是生长因子剥夺期间mTORC1的负调节因子。越来越多的文献还表明,PI(3,4)P2控制许多动态质膜过程。PI(3,4)P2在细胞生物学中的意义日益明显。
    Phosphoinositide 3-kinases regulate many cellular functions, including migration, growth, proliferation, and cell survival. Early studies equated the inhibition of Class I PI3Ks with loss of; phosphatidylinositol 3,4,5-trisphosphate (PIP3), but over time, it was realised that these; treatments also depleted phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). In recent years, the; use of better tools and an improved understanding of its metabolism have allowed for the; identification of specific roles of PI(3,4)P2. This includes the production of PI(3,4)P2 and the; activation of its effector Akt2 in response to growth factor signalling. In contrast, a lysosomal pool of PI(3,4)P2 is a negative regulator of mTORC1 during growth factor deprivation. A growing body of literature also demonstrates that PI(3,4)P2 controls many dynamic plasmalemmal processes. The significance of PI(3,4)P2 in cell biology is increasingly evident.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肌管蛋白家族,包括肌管蛋白1(MTM1)和14种肌管蛋白相关蛋白(MTMR),代表以蛋白酪氨酸磷酸酶结构域为特征的磷酸酶的保守组。9个成员的特征是活性磷酸酶结构域C(X)5R,对PtdIns(3)P和PtdIns(3,5)P2的D3位置进行去磷酸化。肌管蛋白基因突变导致人类病理肌病,和几种神经病,包括X连锁肌管肌病和Charcot-Marie-Tooth4B型。MTM1,MTMR6和MTMR14的影响有助于Ca2信号传导和Ca2稳态,这是许多MTM依赖性肌病和神经病变的关键贡献者。在这里,我们探讨了MTM1/MTMR的不断演变的作用,揭示了它们对Ca2+信号通路关键方面的影响。
    The myotubularin family, encompassing myotubularin 1 (MTM1) and 14 myotubularin-related proteins (MTMRs), represents a conserved group of phosphatases featuring a protein tyrosine phosphatase domain. Nine members are characterized by an active phosphatase domain C(X)5R, dephosphorylating the D3 position of PtdIns(3)P and PtdIns(3,5)P2. Mutations in myotubularin genes result in human myopathies, and several neuropathies including X-linked myotubular myopathy and Charcot-Marie-Tooth type 4B. MTM1, MTMR6 and MTMR14 also contribute to Ca2+ signaling and Ca2+ homeostasis that play a key role in many MTM-dependent myopathies and neuropathies. Here we explore the evolving roles of MTM1/MTMRs, unveiling their influence on critical aspects of Ca2+ signaling pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    拟南芥TTG2转录因子调控着一组表皮性状,包括叶片毛状体的分化,内种皮(或种皮)层细胞中黄酮类色素的产生和外种皮层专门细胞中粘液的产生。尽管TTG2作为多种发育途径的重要调节因子已有20多年的历史,关于TTG2共同调节这些表皮特征的下游机制几乎没有发现。在这项研究中,我们提供了磷酸肌醇脂质信号传导作为调节TTG2依赖性表皮途径的机制的证据。AtPLC1基因的过表达挽救了ttg2-1突变植物的毛状体和种皮表型。此外,在种皮颜色拯救的情况下,AtPLC1过表达恢复了TTG2类黄酮通路靶基因的表达,TT12和TT13/AHA10。与这些观察结果一致,显性AtPLC1T-DNA插入等位基因(plc1-1D)促进野生型和ttg2-3植物的毛状体发育。此外,AtPLC1启动子:GUS分析显示在毛状体中表达,并且该表达似乎依赖于TTG2。一起来看,TTG2和AtPLC1之间的遗传相互作用的发现表明磷酸肌醇信号在调节毛状体发育中的作用,类黄酮色素的生物合成和种皮粘液产生细胞的分化。这一发现为TTG2依赖性发育途径与磷脂信号传导影响的众多分子和细胞现象的交叉点的未来研究提供了新的途径。
    The TTG2 transcription factor of Arabidopsis regulates a set of epidermal traits, including the differentiation of leaf trichomes, flavonoid pigment production in cells of the inner testa (or seed coat) layer and mucilage production in specialized cells of the outer testa layer. Despite the fact that TTG2 has been known for over twenty years as an important regulator of multiple developmental pathways, little has been discovered about the downstream mechanisms by which TTG2 co-regulates these epidermal features. In this study, we present evidence of phosphoinositide lipid signaling as a mechanism for the regulation of TTG2-dependent epidermal pathways. Overexpression of the AtPLC1 gene rescues the trichome and seed coat phenotypes of the ttg2-1 mutant plant. Moreover, in the case of seed coat color rescue, AtPLC1 overexpression restored expression of the TTG2 flavonoid pathway target genes, TT12 and TT13/AHA10. Consistent with these observations, a dominant AtPLC1 T-DNA insertion allele (plc1-1D) promotes trichome development in both wild-type and ttg2-3 plants. Also, AtPLC1 promoter:GUS analysis shows expression in trichomes and this expression appears dependent on TTG2. Taken together, the discovery of a genetic interaction between TTG2 and AtPLC1 suggests a role for phosphoinositide signaling in the regulation of trichome development, flavonoid pigment biosynthesis and the differentiation of mucilage-producing cells of the seed coat. This finding provides new avenues for future research at the intersection of the TTG2-dependent developmental pathways and the numerous molecular and cellular phenomena influenced by phospholipid signaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在过去的三十年里,核中磷脂的存在已被证明并被彻底研究。人们对核肌醇脂质产生了相当大的兴趣,主要是因为它们在信号传导中的作用。这里,我们综述了核磷脂定位的主要问题以及核肌醇脂质及其相关酶在细胞信号传导中的作用,在生理和病理条件下。
    In the last three decades, the presence of phospholipids in the nucleus has been shown and thoroughly investigated. A considerable amount of interest has been raised about nuclear inositol lipids, mainly because of their role in signaling acting. Here, we review the main issues of nuclear phospholipid localization and the role of nuclear inositol lipids and their related enzymes in cellular signaling, both in physiological and pathological conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号