mitochondrial translation

线粒体翻译
  • 文章类型: Journal Article
    有丝分裂体生物发生是一个复杂的过程,涉及线粒体基因组中编码的RNA元件和核基因组中通常编码的有丝分裂体蛋白。这个过程是由核糖体外蛋白精心策划的,核编码的组装因子,它们在所有组装阶段发挥作用,以协调核糖体RNA的加工和成熟与核糖体蛋白的顺序关联。哺乳动物线粒体的生化研究和最近的低温EM结构都提供了对其组装过程的见解。在这篇文章中,我们将简要概述目前对哺乳动物有丝分裂体生物发生途径和相关因素的理解。特别注意最近将铁硫簇鉴定为线粒体的结构成分和小的亚基组装因子,有丝分裂体蛋白和组装因子中氧化还原敏感半胱氨酸的存在,以及它们可能作为氧化还原传感器单元在压力下调节线粒体翻译的作用。
    Mitoribosome biogenesis is a complex process involving RNA elements encoded in the mitochondrial genome and mitoribosomal proteins typically encoded in the nuclear genome. This process is orchestrated by extra-ribosomal proteins, nucleus-encoded assembly factors, which play roles across all assembly stages to coordinate ribosomal RNA processing and maturation with the sequential association of ribosomal proteins. Both biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided insights into their assembly process. In this article, we will briefly outline the current understanding of mammalian mitoribosome biogenesis pathways and the factors involved. Special attention is devoted to the recent identification of iron-sulfur clusters as structural components of the mitoribosome and a small subunit assembly factor, the existence of redox-sensitive cysteines in mitoribosome proteins and assembly factors, and the role they may play as redox sensor units to regulate mitochondrial translation under stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    线粒体翻译是一个复杂的过程,负责合成参与氧化磷酸化的必需蛋白,细胞能量产生的基本途径。这个过程的核心是终止阶段,其中专用因素在确保准确和及时的蛋白质生产中起着关键作用。这篇综述提供了对人类线粒体中翻译终止的当前理解的全面概述,强调两种线粒体终止因子mtRF1和mtRF1a的结构特征和分子功能。
    Mitochondrial translation is a complex process responsible for the synthesis of essential proteins involved in oxidative phosphorylation, a fundamental pathway for cellular energy production. Central to this process is the termination phase, where dedicated factors play a pivotal role in ensuring accurate and timely protein production. This review provides a comprehensive overview of the current understanding of translation termination in human mitochondria, emphasizing structural features and molecular functions of two mitochondrial termination factors mtRF1 and mtRF1a.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    最近的研究确定线粒体是2,2',4,4'-四溴二苯醚(PBDE-47)诱导的神经毒性。本研究旨在研究PBDE-47暴露对线粒体翻译的影响。及其对PBDE-47神经毒性的后续影响。采用Sprague-Dawley(SD)大鼠模型和神经内分泌嗜铬细胞瘤(PC12)细胞检测线粒体ATP水平,线粒体翻译产物,以及重要线粒体调节因子的表达,如必需减数分裂核分裂1(RMND1),雌激素相关受体α(ERRα),和过氧化物酶体增殖物激活受体γ辅激活因子1α(PGC-1α)。探讨PGC-1α/ERRα轴在线粒体翻译中的作用,使用2-(4-叔丁基苯基)苯并咪唑(ZLN005)。细胞和动物模型结果表明,PBDE-47阻碍了PGC-1α/ERRα轴和线粒体翻译。PBDE-47通过降低线粒体DNA(mtDNA)相对含量抑制大鼠海马和PC12细胞的线粒体功能,线粒体翻译产物,和线粒体ATP水平。特别是,ZLN005通过激活PGC-1α/ERRα轴来增强线粒体翻译,从而逆转PBDE-47的神经毒性,然而,用siRNA抑制PGC-1α会减弱其在体外的神经保护作用。总之,这项工作通过提供细胞和动物模型的结果,突出了线粒体翻译在PBDE-47神经毒性中的重要性,并通过激活PGC-1α/ERRα轴提出了一种潜在的治疗方法。环境意义:多溴二苯醚因其高亲脂性而受到广泛关注,持久性,和各种环境介质中的检测水平。越来越多的证据表明,儿童神经发育障碍与多溴二苯醚暴露有关。几项研究还发现,围产期多溴二苯醚暴露可导致实验动物的长期神经行为异常。我们最近的研究还证明了多溴二苯醚-47暴露对线粒体生物发生和动力学的影响,导致记忆和神经行为缺陷。因此,我们探讨PBDE-47诱导的神经毒性的病理机制是否涉及通过PGC-1α/ERRα轴调节线粒体翻译。
    Recent studies are identified the mitochondria as critical targets of 2, 2\', 4, 4\'-tetrabromodiphenyl ether (PBDE-47) induced neurotoxicity. This study aimed at examining the impact of PBDE-47 exposure on mitochondrial translation, and its subsequent effect on PBDE-47 neurotoxicity. The Sprague-Dawley (SD) rat model and neuroendocrine pheochromocytoma (PC12) cells were adopted for the measurements of mitochondrial ATP levels, mitochondrial translation products, and expressions of important mitochondrial regulators, such as required meiotic nuclear division 1 (RMND1), estrogen-related receptor α (ERRα), and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). To delve into the role of PGC-1α/ERRα axis in mitochondrial translation, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) was employed. Both cellular and animal model results shown that PBDE-47 impeded PGC-1α/ERRα axis and mitochondrial translation. PBDE-47 suppressed mitochondrial function in rat hippocampus and PC12 cells by decreasing relative mitochondrial DNA (mtDNA) content, mitochondrial translation products, and mitochondrial ATP levels. Particularly, ZLN005 reversed PBDE-47 neurotoxicity by enhancing mitochondrial translation through activation of PGC-1α/ERRα axis, yet suppressing PGC-1α with siRNA attenuates its neuroprotective effect in vitro. In conclusion, this work highlights the importance of mitochondrial translation in PBDE-47 neurotoxicity by presenting results from cellular and animal models and suggests a potential therapeutic approach through activation of PGC-1α/ERRα axis. ENVIRONMENTAL IMPLICATION: PBDEs have attracted extensive attention because of their high lipophilicity, persistence, and detection levels in various environmental media. Increasing evidence has shown that neurodevelopmental disorders in children are associated with PBDE exposure. Several studies have also found that perinatal PBDE exposure can cause long-lasting neurobehavioral abnormalities in experimental animals. Our recent studies have also demonstrated the impact of PBDE-47 exposure on mitochondrial biogenesis and dynamics, leading to memory and neurobehavioral deficits. Therefore, we explore whether the pathological mechanism of PBDE-47-induced neurotoxicity involves the regulation of mitochondrial translation through the PGC-1α/ERRα axis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DEAD-box解旋酶是线粒体基因表达的重要参与者,这是线粒体呼吸所必需的。在这项研究中,我们表征了裂殖酵母PombeMss116(spMss116),DEAD-boxRNA解旋酶家族的成员。在含有线粒体内含子的背景中缺失spmss116显着降低了线粒体DNA(mtDNA)编码的cox1和cob1mRNA的水平,并损害了线粒体翻译,导致严重的呼吸缺陷和静止期细胞活力的丧失。线粒体内含子的缺失将cox1和cob1mRNA的水平恢复到宽型(WT)水平,但无法恢复Δspmss116细胞的线粒体翻译和呼吸。此外,线粒体内含子和无内含子背景中spmss116的缺失损害了线粒体体组装和线粒体蛋白的不稳定。我们的发现表明,由spmss116缺失引起的线粒体翻译缺陷很可能是由于线粒体组装受损。
    DEAD-box helicases are important players in mitochondrial gene expression, which is necessary for mitochondrial respiration. In this study, we characterized Schizosaccharomyces pombe Mss116 (spMss116), a member of the family of DEAD-box RNA helicases. Deletion of spmss116 in a mitochondrial intron-containing background significantly reduced the levels of mitochondrial DNA (mtDNA)-encoded cox1 and cob1 mRNAs and impaired mitochondrial translation, leading to a severe respiratory defect and a loss of cell viability during stationary phase. Deletion of mitochondrial introns restored the levels of cox1 and cob1 mRNAs to wide-type (WT) levels but could not restore mitochondrial translation and respiration in Δspmss116 cells. Furthermore, deletion of spmss116 in both mitochondrial intron-containing and intronless backgrounds impaired mitoribosome assembly and destabilization of mitoribosomal proteins. Our findings suggest that defective mitochondrial translation caused by deletion of spmss116 is most likely due to impaired mitoribosome assembly.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核糖体生物发生,涉及rRNA和r蛋白的加工/组装是一个至关重要的过程。在酿酒酵母线粒体中,核糖体小亚基包含15SrRNA(15S)。虽然15S5'端处理使用Ccm1p和Pet127p,3'端处理的机制尚不清楚。我们揭示了Rmd9p参与保护/处理15S3'-end。Rmd9p缺陷导致在15S3'-末端上游183个核苷酸的位置切割,并在失去3\'-次要域名的情况下。Rmd9p结合15S前体中的3'端间隔区序列,rmd9和dss1之间的遗传相互作用表明Rmd9p在3'端间隔区加工过程中调节/限制mtEXO活性。
    Ribosome biogenesis, involving processing/assembly of rRNAs and r-proteins is a vital process. In Saccharomyces cerevisiae mitochondria, ribosomal small subunit comprises 15S rRNA (15S). While the 15S 5\'-end processing uses Ccm1p and Pet127p, the mechanisms of the 3\'-end processing remain unclear. We reveal involvement of Rmd9p in safeguarding/processing 15S 3\'-end. Rmd9p deficiency results in a cleavage at a position 183 nucleotides upstream of 15S 3\'-end, and in the loss of the 3\'-minor domain. Rmd9p binds to the sequences in the 3\'-end region of 15S, and a genetic interaction between rmd9 and dss1 indicates that Rmd9p regulates/limits mtEXO activity during the 3\'-end spacer processing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氧化磷酸化(OXPHOS)复合物,由线粒体和核DNA编码,是细胞ATP的重要生产者,但是如何协调核和线粒体基因表达步骤以实现平衡的OXPHOS亚基生物发生仍未解决。这里,我们提出了人类核和线粒体信使RNA(mt-mRNA)生命周期的平行定量分析,包括抄本制作,processing,核糖体联合,和退化。基因表达的几乎每个阶段的动力学速率在区室之间完全不同。与核mRNA相比,mt-mRNAs的产量增加了1100倍,降解速度快7倍,积累到160倍以上的水平。线粒体因子LRPPRC和FASTKD5的定量建模和消耗确定了线粒体调控的关键点,揭示了线粒体表达差异本质上是由人类线粒体pre-mRNA的高度多顺反子性质引起的。我们建议解决这些差异需要线粒体翻译速率慢100倍,将线粒体作为线粒体共调节的纽带。
    Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体翻译取决于mRNA特异性激活剂。在裂殖酵母中,DEAD-box蛋白Mrh5,五肽重复(PPR)蛋白Ppr4,Mtf2和Sls1形成线粒体DNA(mtDNA)编码的cox1mRNA翻译所需的稳定复合物(称为Mrh5C),细胞色素c氧化酶复合物的最大亚基。然而,Mrh5C是如何形成的以及Mrh5C在cox1mRNA翻译中起什么作用还没有报道。为了解决这些问题,我们研究了单个Mrh5C亚基在Mrh5C的组装和功能中的作用。我们的结果显示Mtf2和Sls1形成亚复合物,作为支架将Mrh5和Ppr4结合在一起。Mrh5C与丝裂体(mtSSU)的小亚基结合,但是每个亚基不能独立地与mtSSU结合。重要的是,mrh5C是cox1mRNA与mtSSU结合所必需的。最后,我们调查了Mrh5中DEAD-box签名的重要性。我们发现Mrh5的DEAD盒是Mrh5C和cox1mRNA与mtSSU结合所必需的。出乎意料的是,该基序对于Mrh5与其他Mrh5C亚基的相互作用也是必需的。总之,我们的结果表明,Mrh5和Ppr4合作激活cox1mRNA的翻译。我们的结果还表明,Mrh5C通过促进cox1mRNA向mtSSU的募集来激活cox1mRNA的翻译。
    Mitochondrial translation depends on mRNA-specific activators. In Schizosaccharomyces pombe, DEAD-box protein Mrh5, pentatricopeptide repeat (PPR) protein Ppr4, Mtf2, and Sls1 form a stable complex (designated Mrh5C) required for translation of mitochondrial DNA (mtDNA)-encoded cox1 mRNA, the largest subunit of the cytochrome c oxidase complex. However, how Mrh5C is formed and what role Mrh5C plays in cox1 mRNA translation have not been reported. To address these questions, we investigated the role of individual Mrh5C subunits in the assembly and function of Mrh5C. Our results revealed that Mtf2 and Sls1 form a subcomplex that serves as a scaffold to bring Mrh5 and Ppr4 together. Mrh5C binds to the small subunit of the mitoribosome (mtSSU), but each subunit could not bind to the mtSSU independently. Importantly, Mrh5C is required for the association of cox1 mRNA with the mtSSU. Finally, we investigated the importance of the signature DEAD-box in Mrh5. We found that the DEAD-box of Mrh5 is required for the association of Mrh5C and cox1 mRNA with the mtSSU. Unexpectedly, this motif is also required for the interaction of Mrh5 with other Mrh5C subunits. Altogether, our results suggest that Mrh5 and Ppr4 cooperate in activating the translation of cox1 mRNA. Our results also suggest that Mrh5C activates the translation of cox1 mRNA by promoting the recruitment of cox1 mRNA to the mtSSU.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体鳞,线粒体内膜的折叠,随着年龄的增长,他们的建筑经历了异常的变化。然而,潜在的分子机制及其对大脑衰老的影响在很大程度上是难以捉摸的。这里,我们观察到Glu-5\'tsRNA-CTC的年龄依赖性积累,转移RNA衍生的小RNA(tsRNA),来自谷氨酸能神经元线粒体中核编码的tRNAGlu。线粒体Glu-5\'tsRNA-CTC破坏mt-tRNALeu和亮氨酰-tRNA合成酶2(LaRs2)的结合,损害mt-tRNALeu氨基酰化和线粒体编码的蛋白质翻译。线粒体翻译缺陷会破坏cr的组织,导致谷氨酰胺酶(GLS)依赖性谷氨酸形成受损,突触体谷氨酸水平降低。此外,减少Glu-5\'tsRNA-CTC保护老年大脑免受线粒体cr组织中与年龄相关的缺陷,谷氨酸代谢,突触结构,和记忆。因此,除了说明正常线粒体cr超微结构在维持谷氨酸水平中的生理作用外,我们的研究确定了tsRNA在脑老化和与年龄相关的记忆衰退中的病理作用.
    Mitochondrial cristae, infoldings of the mitochondrial inner membrane, undergo aberrant changes in their architecture with age. However, the underlying molecular mechanisms and their contribution to brain aging are largely elusive. Here, we observe an age-dependent accumulation of Glu-5\'tsRNA-CTC, a transfer-RNA-derived small RNA (tsRNA), derived from nuclear-encoded tRNAGlu in the mitochondria of glutaminergic neurons. Mitochondrial Glu-5\'tsRNA-CTC disrupts the binding of mt-tRNALeu and leucyl-tRNA synthetase2 (LaRs2), impairing mt-tRNALeu aminoacylation and mitochondria-encoded protein translation. Mitochondrial translation defects disrupt cristae organization, leading to damaged glutaminase (GLS)-dependent glutamate formation and reduced synaptosomal glutamate levels. Moreover, reduction of Glu-5\'tsRNA-CTC protects aged brains from age-related defects in mitochondrial cristae organization, glutamate metabolism, synaptic structures, and memory. Thus, beyond illustrating a physiological role for normal mitochondrial cristae ultrastructure in maintaining glutamate levels, our study defines a pathological role for tsRNAs in brain aging and age-related memory decline.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞蛋白质停滞需要多肽跨膜转运。尽管有缺陷的运输过程会触发胞质救援和质量控制机制,从而清除非生产性货物中的易位酶和膜,在线粒体内合成的蛋白质无法通过这些机制获得。线粒体编码的蛋白质通过保守的插入酶OXA1L共翻译插入内膜。这里,我们将TMEM126A鉴定为OXA1L相互作用蛋白。TMEM126A与线粒体核糖体和翻译产物结合。TMEM126A的丢失导致线粒体翻译产物的不稳定,触发内膜质量控制过程,其中新合成的蛋白质被线粒体iAAA蛋白酶降解。我们的数据揭示了TMEM126A与OXA1L在蛋白质插入膜中的合作。TMEM126A丢失后,货物阻断的OXA1L插入酶复合物与其货物一起通过iAAA蛋白酶机械进行蛋白水解清除。
    Cellular proteostasis requires transport of polypeptides across membranes. Although defective transport processes trigger cytosolic rescue and quality control mechanisms that clear translocases and membranes from unproductive cargo, proteins that are synthesized within mitochondria are not accessible to these mechanisms. Mitochondrial-encoded proteins are inserted cotranslationally into the inner membrane by the conserved insertase OXA1L. Here, we identify TMEM126A as a OXA1L-interacting protein. TMEM126A associates with mitochondrial ribosomes and translation products. Loss of TMEM126A leads to the destabilization of mitochondrial translation products, triggering an inner membrane quality control process, in which newly synthesized proteins are degraded by the mitochondrial iAAA protease. Our data reveal that TMEM126A cooperates with OXA1L in protein insertion into the membrane. Upon loss of TMEM126A, the cargo-blocked OXA1L insertase complexes undergo proteolytic clearance by the iAAA protease machinery together with its cargo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虽然抗生素是专门针对细菌的,已知大多数影响宿主细胞生理学。据报道,某些类别的抗生素具有免疫抑制作用,但是潜在的机制仍然难以捉摸。这里,我们发现强力霉素,核糖体靶向抗生素(RAbo),有效抑制骨髓源性巨噬细胞(BMDMs)中线粒体翻译和核苷酸结合域以及富含亮氨酸的重复序列蛋白3(NLRP3)炎症体介导的caspase-1激活和白介素1β(IL-1β)的产生。此外,线粒体甲硫氨酰-tRNA甲酰基转移酶(Mtfmt)的敲低,这是线粒体翻译的速率限制,还导致NLRP3炎性体介导的caspase-1激活和IL-1β分泌的抑制。此外,多西环素处理和Mtfmt敲除都阻断了线粒体DNA(mtDNA)的合成和氧化mtDNA(ox-mtDNA)的生成,作为NLRP3炎性体激活的配体。此外,体内结果表明,多西环素减轻NLRP3炎性体依赖性炎症,包括脂多糖诱导的全身性炎症和子宫内膜炎。一起来看,结果揭示了靶向有丝分裂体的抗生素能够通过抑制线粒体翻译和mtDNA合成来减轻NLRP3炎性体激活,从而为治疗NLRP3相关疾病开辟了新的可能性.
    While antibiotics are designed to target bacteria specifically, most are known to affect host cell physiology. Certain classes of antibiotics have been reported to have immunosuppressive effects, but the underlying mechanisms remain elusive. Here, we show that doxycycline, a ribosomal-targeting antibiotic, effectively inhibited both mitochondrial translation and nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome-mediated caspase-1 activation and interleukin-1β (IL-1β) production in bone-marrow-derived macrophages (BMDMs). In addition, knockdown of mitochondrial methionyl-tRNA formyltransferase (Mtfmt), which is rate limiting for mitochondrial translation, also resulted in the inhibition of NLRP3 inflammasome-mediated caspase-1 activation and IL-1β secretion. Furthermore, both doxycycline treatment and Mtfmt knockdown blocked the synthesis of mitochondrial DNA (mtDNA) and the generation of oxidized mtDNA (Ox-mtDNA), which serves as a ligand for NLRP3 inflammasome activation. In addition, in vivo results indicated that doxycycline mitigated NLRP3 inflammasome-dependent inflammation, including lipopolysaccharide-induced systemic inflammation and endometritis. Taken together, the results unveil the antibiotics targeting the mitoribosome have the ability to mitigate NLRP3 inflammasome activation by inhibiting mitochondrial translation and mtDNA synthesis thus opening up new possibilities for the treatment of NLRP3-related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号