mitochondrial translation

线粒体翻译
  • 文章类型: Journal Article
    线粒体翻译是一个复杂的过程,负责合成参与氧化磷酸化的必需蛋白,细胞能量产生的基本途径。这个过程的核心是终止阶段,其中专用因素在确保准确和及时的蛋白质生产中起着关键作用。这篇综述提供了对人类线粒体中翻译终止的当前理解的全面概述,强调两种线粒体终止因子mtRF1和mtRF1a的结构特征和分子功能。
    Mitochondrial translation is a complex process responsible for the synthesis of essential proteins involved in oxidative phosphorylation, a fundamental pathway for cellular energy production. Central to this process is the termination phase, where dedicated factors play a pivotal role in ensuring accurate and timely protein production. This review provides a comprehensive overview of the current understanding of translation termination in human mitochondria, emphasizing structural features and molecular functions of two mitochondrial termination factors mtRF1 and mtRF1a.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    氧化磷酸化(OXPHOS)复合物,由线粒体和核DNA编码,是细胞ATP的重要生产者,但是如何协调核和线粒体基因表达步骤以实现平衡的OXPHOS亚基生物发生仍未解决。这里,我们提出了人类核和线粒体信使RNA(mt-mRNA)生命周期的平行定量分析,包括抄本制作,processing,核糖体联合,和退化。基因表达的几乎每个阶段的动力学速率在区室之间完全不同。与核mRNA相比,mt-mRNAs的产量增加了1100倍,降解速度快7倍,积累到160倍以上的水平。线粒体因子LRPPRC和FASTKD5的定量建模和消耗确定了线粒体调控的关键点,揭示了线粒体表达差异本质上是由人类线粒体pre-mRNA的高度多顺反子性质引起的。我们建议解决这些差异需要线粒体翻译速率慢100倍,将线粒体作为线粒体共调节的纽带。
    Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体翻译取决于mRNA特异性激活剂。在裂殖酵母中,DEAD-box蛋白Mrh5,五肽重复(PPR)蛋白Ppr4,Mtf2和Sls1形成线粒体DNA(mtDNA)编码的cox1mRNA翻译所需的稳定复合物(称为Mrh5C),细胞色素c氧化酶复合物的最大亚基。然而,Mrh5C是如何形成的以及Mrh5C在cox1mRNA翻译中起什么作用还没有报道。为了解决这些问题,我们研究了单个Mrh5C亚基在Mrh5C的组装和功能中的作用。我们的结果显示Mtf2和Sls1形成亚复合物,作为支架将Mrh5和Ppr4结合在一起。Mrh5C与丝裂体(mtSSU)的小亚基结合,但是每个亚基不能独立地与mtSSU结合。重要的是,mrh5C是cox1mRNA与mtSSU结合所必需的。最后,我们调查了Mrh5中DEAD-box签名的重要性。我们发现Mrh5的DEAD盒是Mrh5C和cox1mRNA与mtSSU结合所必需的。出乎意料的是,该基序对于Mrh5与其他Mrh5C亚基的相互作用也是必需的。总之,我们的结果表明,Mrh5和Ppr4合作激活cox1mRNA的翻译。我们的结果还表明,Mrh5C通过促进cox1mRNA向mtSSU的募集来激活cox1mRNA的翻译。
    Mitochondrial translation depends on mRNA-specific activators. In Schizosaccharomyces pombe, DEAD-box protein Mrh5, pentatricopeptide repeat (PPR) protein Ppr4, Mtf2, and Sls1 form a stable complex (designated Mrh5C) required for translation of mitochondrial DNA (mtDNA)-encoded cox1 mRNA, the largest subunit of the cytochrome c oxidase complex. However, how Mrh5C is formed and what role Mrh5C plays in cox1 mRNA translation have not been reported. To address these questions, we investigated the role of individual Mrh5C subunits in the assembly and function of Mrh5C. Our results revealed that Mtf2 and Sls1 form a subcomplex that serves as a scaffold to bring Mrh5 and Ppr4 together. Mrh5C binds to the small subunit of the mitoribosome (mtSSU), but each subunit could not bind to the mtSSU independently. Importantly, Mrh5C is required for the association of cox1 mRNA with the mtSSU. Finally, we investigated the importance of the signature DEAD-box in Mrh5. We found that the DEAD-box of Mrh5 is required for the association of Mrh5C and cox1 mRNA with the mtSSU. Unexpectedly, this motif is also required for the interaction of Mrh5 with other Mrh5C subunits. Altogether, our results suggest that Mrh5 and Ppr4 cooperate in activating the translation of cox1 mRNA. Our results also suggest that Mrh5C activates the translation of cox1 mRNA by promoting the recruitment of cox1 mRNA to the mtSSU.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞蛋白质停滞需要多肽跨膜转运。尽管有缺陷的运输过程会触发胞质救援和质量控制机制,从而清除非生产性货物中的易位酶和膜,在线粒体内合成的蛋白质无法通过这些机制获得。线粒体编码的蛋白质通过保守的插入酶OXA1L共翻译插入内膜。这里,我们将TMEM126A鉴定为OXA1L相互作用蛋白。TMEM126A与线粒体核糖体和翻译产物结合。TMEM126A的丢失导致线粒体翻译产物的不稳定,触发内膜质量控制过程,其中新合成的蛋白质被线粒体iAAA蛋白酶降解。我们的数据揭示了TMEM126A与OXA1L在蛋白质插入膜中的合作。TMEM126A丢失后,货物阻断的OXA1L插入酶复合物与其货物一起通过iAAA蛋白酶机械进行蛋白水解清除。
    Cellular proteostasis requires transport of polypeptides across membranes. Although defective transport processes trigger cytosolic rescue and quality control mechanisms that clear translocases and membranes from unproductive cargo, proteins that are synthesized within mitochondria are not accessible to these mechanisms. Mitochondrial-encoded proteins are inserted cotranslationally into the inner membrane by the conserved insertase OXA1L. Here, we identify TMEM126A as a OXA1L-interacting protein. TMEM126A associates with mitochondrial ribosomes and translation products. Loss of TMEM126A leads to the destabilization of mitochondrial translation products, triggering an inner membrane quality control process, in which newly synthesized proteins are degraded by the mitochondrial iAAA protease. Our data reveal that TMEM126A cooperates with OXA1L in protein insertion into the membrane. Upon loss of TMEM126A, the cargo-blocked OXA1L insertase complexes undergo proteolytic clearance by the iAAA protease machinery together with its cargo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体翻译发生在线粒体核糖体上,也被称为三体。mitoribosome的组装是一个高度协调的过程。在有丝分裂体生物发生期间,各种装配因素与新生核糖体短暂联系在一起,便于精确和有效的mitoribosity的建设。然而,装配过程中涉及的具体因素,精确的机制,而参与这一重要过程的细胞区室尚未完全了解。在这项研究中,我们发现GTP结合蛋白8(GTPBP8)在线粒体大亚基(mt-LSU)的组装和线粒体翻译中的关键作用.GTPBP8被鉴定为位于基质中并与线粒体内膜外周结合的新型GTP酶。重要的是,GTPBP8在其组装过程中与mt-LSU特别相关。GTPBP8的耗尽导致mt-LSU的异常积累,表明GTPBP8对于正确的mt-LSU组装至关重要。此外,GTPBP8缺失导致全组装55S单体水平降低.这种受损的组装导致线粒体翻译受损,因此,线粒体功能受损。将GTPBP8鉴定为这些过程中的重要参与者,为线粒体蛋白质合成及其调控的分子机制提供了新的见解。
    Mitochondrial translation occurs on the mitochondrial ribosome, also known as the mitoribosome. The assembly of mitoribosomes is a highly coordinated process. During mitoribosome biogenesis, various assembly factors transiently associate with the nascent ribosome, facilitating the accurate and efficient construction of the mitoribosome. However, the specific factors involved in the assembly process, the precise mechanisms, and the cellular compartments involved in this vital process are not yet fully understood. In this study, we discovered a crucial role for GTP-binding protein 8 (GTPBP8) in the assembly of the mitoribosomal large subunit (mt-LSU) and mitochondrial translation. GTPBP8 is identified as a novel GTPase located in the matrix and peripherally bound to the inner mitochondrial membrane. Importantly, GTPBP8 is specifically associated with the mt-LSU during its assembly. Depletion of GTPBP8 leads to an abnormal accumulation of mt-LSU, indicating that GTPBP8 is critical for proper mt-LSU assembly. Furthermore, the absence of GTPBP8 results in reduced levels of fully assembled 55S monosomes. This impaired assembly leads to compromised mitochondrial translation and, consequently, impaired mitochondrial function. The identification of GTPBP8 as an important player in these processes provides new insights into the molecular mechanisms underlying mitochondrial protein synthesis and its regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    D-阿洛酮糖,一种稀有的糖,已经提出在解决代谢紊乱如肥胖和2型糖尿病(T2D)方面具有潜在的益处。然而,这些影响背后的确切机制仍然知之甚少。我们旨在阐明D-阿洛酮糖影响肥胖诱导的胰岛素抵抗的机制。我们对暴露于高脂饮食(HFD)的小鼠的肝脏和白色脂肪组织以及肥胖个体的白色脂肪组织进行了基因集富集分析。我们的研究表明,D-阿洛酮糖有效抑制IFN-γ,恢复趋化因子信号,和增强HFD喂养小鼠肝脏中的巨噬细胞功能。这意味着D-阿洛酮糖可以抑制肝脏炎症,减轻胰岛素抵抗并随后影响脂肪组织。此外,D-阿洛酮糖的补充改善了HFD喂养的小鼠的肝脏和白色脂肪组织中的线粒体NADH稳态和翻译。值得注意的是,我们观察到,与胰岛素敏感型肥胖受试者相比,胰岛素抵抗型肥胖受试者的网膜组织中NADH稳态和线粒体翻译降低.一起来看,这些结果表明,补充阿洛酮糖可通过减轻巨噬细胞和线粒体功能的破坏,改善肥胖诱导的胰岛素抵抗.此外,我们的数据强化了线粒体能量消耗在肥胖引发的胰岛素抵抗发展中的关键作用.
    D-allulose, a rare sugar, has been proposed to have potential benefits in addressing metabolic disorders such as obesity and type 2 diabetes (T2D). However, the precise mechanisms underlying these effects remain poorly understood. We aimed to elucidate the mechanisms by which D-allulose influences obesity-induced insulin resistance. We conducted gene set enrichment analysis on the liver and white adipose tissue of mice exposed to a high-fat diet (HFD) along with the white adipose tissue of individuals with obesity. Our study revealed that D-allulose effectively suppressed IFN-γ, restored chemokine signaling, and enhanced macrophage function in the livers of HFD-fed mice. This implies that D-allulose curtails liver inflammation, alleviating insulin resistance and subsequently impacting adipose tissue. Furthermore, D-allulose supplementation improved mitochondrial NADH homeostasis and translation in both the liver and white adipose tissue of HFD-fed mice. Notably, we observed decreased NADH homeostasis and mitochondrial translation in the omental tissue of insulin-resistant obese subjects compared to their insulin-sensitive counterparts. Taken together, these results suggest that supplementation with allulose improves obesity-induced insulin resistance by mitigating the disruptions in macrophage and mitochondrial function. Furthermore, our data reinforce the crucial role that mitochondrial energy expenditure plays in the development of insulin resistance triggered by obesity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在哺乳动物线粒体中,初级RNA转录本的加工涉及一系列协调的切割和修饰事件,导致加工中间体和成熟mt-RNA的形成。RNA19是一种异常稳定的未加工前体,生理上多腺苷酸化,其中包括16Smt-rRNA,mt-tRNAeuUUR和mt-ND1mRNA。这些特点,连同其在线粒体功能缺陷的细胞模型中的稳态水平的改变,使RNA19成为线粒体分子过程的生理调节以及线粒体疾病的发病机理的潜在重要分子。在这项工作中,我们定量和定性地检查了MELAS跨线粒体杂种中的RNA19,这些杂种携带mtDNA3243A>G转换并显示出严重的线粒体翻译缺陷。通过等速转蔗糖梯度和RT-qPCR实验相结合,我们发现RNA19在突变细胞中与线粒体大亚基(mt-LSU)积累并共沉积。有趣的是,分离的LARS2C末端结构域(Cterm)的外源表达,这被证明可以挽救MELAS杂种中的有缺陷的翻译,通过将mt-LSU相关的RNA19降级到游离未结合的RNA池中,降低了其水平。总的来说,这里报道的数据支持RNA19在线粒体生理病理过程中的调节作用,鉴于治疗策略的开发,将这种RNA前体指定为可能的分子靶标。
    In mammalian mitochondria, the processing of primary RNA transcripts involves a coordinated series of cleavage and modification events, leading to the formation of processing intermediates and mature mt-RNAs. RNA19 is an unusually stable unprocessed precursor, physiologically polyadenylated, which includes the 16S mt-rRNA, the mt-tRNALeuUUR and the mt-ND1 mRNA. These peculiarities, together with the alteration of its steady-state levels in cellular models with defects in mitochondrial function, make RNA19 a potentially important molecule for the physiological regulation of mitochondrial molecular processes as well as for the pathogenesis of mitochondrial diseases. In this work, we quantitatively and qualitatively examined RNA19 in MELAS trans-mitochondrial cybrids carrying the mtDNA 3243A>G transition and displaying a profound mitochondrial translation defect. Through a combination of isokinetic sucrose gradient and RT-qPCR experiments, we found that RNA19 accumulated and co-sedimented with the mitoribosomal large subunit (mt-LSU) in mutant cells. Intriguingly, exogenous expression of the isolated LARS2 C-terminal domain (Cterm), which was shown to rescue defective translation in MELAS cybrids, decreased the levels of mt-LSU-associated RNA19 by relegating it to the pool of free unbound RNAs. Overall, the data reported here support a regulatory role for RNA19 in mitochondrial physiopathological processes, designating this RNA precursor as a possible molecular target in view of therapeutic strategy development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体是唯一受两个基因组调控的细胞器。核DNA(nDNA)和线粒体DNA(mtDNA)的协调翻译,它们共同编码氧化磷酸化(OXPHOS)复合物的亚基,对于确定肿瘤细胞的代谢可塑性至关重要。RNA结合蛋白(RBP)是转录后调节因子,在决定mRNA命运中起关键作用。RBP快速有效地重塑线粒体蛋白质组,以响应细胞内和细胞外应激源,调节线粒体的呼吸能力,为肿瘤细胞适应不同的环境压力和生长需要提供能量。这篇综述强调了RBP使用液-液相分离(LLPS)作为翻译调节平台的能力,整合核-线粒体阳性和逆行信号以协调跨部门翻译,重塑线粒体能量代谢,促进肿瘤细胞的发育和存活。
    Mitochondria are the only organelles regulated by two genomes. The coordinated translation of nuclear DNA (nDNA) and mitochondrial DNA (mtDNA), which together co-encode the subunits of the oxidative phosphorylation (OXPHOS) complex, is critical for determining the metabolic plasticity of tumor cells. RNA-binding protein (RBP) is a post-transcriptional regulatory factor that plays a pivotal role in determining the fate of mRNA. RBP rapidly and effectively reshapes the mitochondrial proteome in response to intracellular and extracellular stressors, mediating the cytoplasmic and mitochondrial translation balance to adjust mitochondrial respiratory capacity and provide energy for tumor cells to adapt to different environmental pressures and growth needs. This review highlights the ability of RBPs to use liquid-liquid phase separation (LLPS) as a platform for translation regulation, integrating nuclear-mitochondrial positive and retrograde signals to coordinate cross-department translation, reshape mitochondrial energy metabolism, and promote the development and survival of tumor cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胰岛素降解酶(IDE)是一种高度保守的金属蛋白酶,主要位于细胞质中。尽管IDE可以有效降解胰岛素和其他一些低分子量底物,它无处不在的表达表明了实验结果支持的附加功能,例如在应激反应和细胞蛋白质稳态中的作用。据报道,长全长IDE转录物的翻译导致靶向线粒体,但是IDE在这个隔间中的作用是未知的。为了获得线粒体中IDE功能的初步线索,我们使用邻近生物素化方法来鉴定与靶向线粒体基质的野生型和蛋白酶死亡IDE相互作用的蛋白质.我们发现IDE与多种线粒体核糖体蛋白以及参与线粒体复合物I和IV合成和组装的蛋白质相互作用。野生型和突变型IDE的线粒体间细胞高度相似,并且没有显示任何可能的蛋白水解IDE底物。我们推测,IDE可以在线粒体中采用与细胞质中类似的其他非蛋白水解功能,充当伴侣,促进蛋白质稳态和应激反应。
    Insulin-degrading enzyme (IDE) is a highly conserved metalloprotease that is mainly localized in the cytosol. Although IDE can degrade insulin and some other low molecular weight substrates efficiently, its ubiquitous expression suggests additional functions supported by experimental findings, such as a role in stress responses and cellular protein homeostasis. The translation of a long full-length IDE transcript has been reported to result in targeting to mitochondria, but the role of IDE in this compartment is unknown. To obtain initial leads on the function of IDE in mitochondria, we used a proximity biotinylation approach to identify proteins interacting with wild-type and protease-dead IDE targeted to the mitochondrial matrix. We find that IDE interacts with multiple mitochondrial ribosomal proteins as well as with proteins involved in the synthesis and assembly of mitochondrial complex I and IV. The mitochondrial interactomes of wild type and mutant IDE are highly similar and do not reveal any likely proteolytic IDE substrates. We speculate that IDE could adopt similar additional non-proteolytic functions in mitochondria as in the cytosol, acting as a chaperone and contributing to protein homeostasis and stress responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多种抗癌药物已被提出引起细胞死亡,在某种程度上,通过增加细胞活性氧(ROS)的稳态水平。然而,对于大多数这些药物来说,对所产生的ROS的确切功能和感知方式知之甚少。目前尚不清楚ROS修饰的蛋白质及其在药物敏感性/耐药性中的作用。为了回答这些问题,我们用整合的蛋白质组学方法检测了11种抗癌药物,不仅确定了许多独特的靶标,而且还确定了共有的靶标,包括核糖体成分,提示药物调节翻译的共同机制。我们专注于CHK1,我们发现它是一种核H2O2传感器,可启动细胞程序来抑制ROS。CHK1磷酸化线粒体DNA结合蛋白SSBP1以防止其线粒体定位,这反过来又减少了核H2O2。我们的结果表明,在卵巢癌中,解决核H2O2积累和介导对铂类药物的耐药性所需的可药用核到线粒体的ROS传感途径。
    Multiple anticancer drugs have been proposed to cause cell death, in part, by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs, exactly how the resultant ROS function and are sensed is poorly understood. It remains unclear which proteins the ROS modify and their roles in drug sensitivity/resistance. To answer these questions, we examined 11 anticancer drugs with an integrated proteogenomic approach identifying not only many unique targets but also shared ones-including ribosomal components, suggesting common mechanisms by which drugs regulate translation. We focus on CHK1 that we find is a nuclear H2O2 sensor that launches a cellular program to dampen ROS. CHK1 phosphorylates the mitochondrial DNA-binding protein SSBP1 to prevent its mitochondrial localization, which in turn decreases nuclear H2O2. Our results reveal a druggable nucleus-to-mitochondria ROS-sensing pathway-required to resolve nuclear H2O2 accumulation and mediate resistance to platinum-based agents in ovarian cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号