electrochemical reactions

  • 文章类型: Journal Article
    本文概述了电化学液相透射电子显微镜(ELP-TEM)在可视化可充电电池反应中的应用。该技术提供原子尺度的空间分辨率和实时时间分辨率,能够在实际工作条件下直接观察和分析电池材料和工艺。该综述重点介绍了ELP-TEM关于电化学反应机理的主要发现和见解,并讨论了ELP-TEM的当前局限性和未来前景。包括空间和时间分辨率的改进以及可以研究的材料和系统范围的扩展。此外,该综述强调了ELP-TEM在理解和优化高性能设计和制造方面的关键作用,持久耐用的可充电电池。
    This review presents an overview of the application of electrochemical liquid-phase transmission electron microscopy (ELP-TEM) in visualizing rechargeable battery reactions. The technique provides atomic-scale spatial resolution and real-time temporal resolution, enabling direct observation and analysis of battery materials and processes under realistic working conditions. The review highlights key findings and insights obtained by ELP-TEM on the electrochemical reaction mechanisms and discusses the current limitations and future prospects of ELP-TEM, including improvements in spatial and temporal resolution and the expansion of the scope of materials and systems that can be studied. Furthermore, the review underscores the critical role of ELP-TEM in understanding and optimizing the design and fabrication of high-performance, long-lasting rechargeable batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本研究描述了基于过氧化氢酶活性的用于水中微生物监测的电位传感器的开发。该传感器包括MnO2修饰的电极,该电极对0.16M至3.26M的过氧化氢(H2O2)线性响应。当H2O2溶液掺加过氧化氢酶或产生过氧化氢酶的微生物分解H2O2时,电极电势下降。该传感器对不同的细菌及其过氧化氢酶活性有响应。电化学传感器对大肠杆菌的检测下限(LOD)为11CFU/ml,12CFU/ml的柠檬酸杆菌,和23CFU/ml的铜绿假单胞菌。该传感器在3.49、3.02和4.24mV/cm2dec对大肠杆菌显示出高灵敏度,C.年轻,还有铜绿假单胞菌,分别。非生物感测电极可以多次使用而不改变响应电势(高达100个读数),具有超过六个月的保质期。响应时间是几秒钟,总测试时间为5分钟。此外,该传感器有效地测试了实际样品(饮用水和灰水),这使得它成为一个快速和可靠的传感工具。因此,这项研究提供了一种有前途的高灵敏度的水监测工具,稳定性,良好的检测限,和来自其他水污染物的最小干扰。
    The present study describes the development of a potentiometric sensor for microbial monitoring in water based on catalase activity. The sensor comprises a MnO2-modified electrode that responds linearly to hydrogen peroxide (H2O2) from 0.16 M to 3.26 M. The electrode potential drops when the H2O2 solution is spiked with catalase or catalase-producing microorganisms that decompose H2O2. The sensor is responsive to different bacteria and their catalase activities. The electrochemical sensor exhibits a lower limit of detection (LOD) for Escherichia coli at 11 CFU/ml, Citrobacter youngae at 12 CFU/ml, and Pseudomonas aeruginosa at 23 CFU/ml. The sensor shows high sensitivity at 3.49, 3.02, and 4.24 mV/cm2dec for E. coli, C. youngae, and P. aeruginosa, respectively. The abiotic sensing electrode can be used multiple times without changing the response potential (up to 100 readings) with a shelf-life of over six months. The response time is a few seconds, with a total test time of 5 min. Additionally, the sensor effectively tested actual samples (drinking and grey water), which makes it a quick and reliable sensing tool. Therefore, the study offers a promising water monitoring tool with high sensitivity, stability, good detection limit, and minimum interference from other water contaminants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    水分解是缓解全球能源危机的物质研究的长期追求。尽管在水分解反应中几种高成本的含贵金属的电催化剂显示出高效率,科学家们专注于替代无金属的碳或聚合物基材料具有可比的活性,使过程经济。在这篇文章中,我们战略性地设计了一种无贵金属的噻二唑(TDA)和三嗪(Trz)连接的多孔有机聚合物(TDA-Trz-POP),具有富N和S的表面。粉末X射线衍射(PXRD),傅里叶变换红外(FT-IR),已进行了固态13C幻角旋转核磁共振(MAS-NMR)和X射线光电子能谱(XPS)分析,以预测其可能的框架结构。这种硬纸型TDA-Trz-POP显示出析氢反应(HER)具有低过电位(10mAcm-2电流密度为129.2mVw.r.t.RHE)和低Tafel斜率(82.1mVdeg-1)。再一次,这种无金属催化剂在10mAcm-2电流密度下,在410mV超电势w.r.tRHE下显示出析氧反应(OER),较低的Tafel斜率为104.5mVdeg-1。在不同pH条件下在两个电极设置中进一步测试这种双功能活性。孔隙率似乎是这种不含金属的电催化剂材料的电催化性能的祝福。Further,通过密度泛函理论(DFT)分析,解决了HER和OER活性背后的奥秘。这项工作为材料科学家提供了低成本的见解,无金属材料设计,用于高效的水分解反应。
    Water splitting is a long-standing quest to material research for mitigating the global energy crisis. Despite high efficiency shown by several high cost noble metal containing electrocatalysts in the water splitting reaction, scientists are focused on alternate metal-free carbon or polymer based materials with comparable activity to make the process economical. In this article, we have strategically designed a noble metal-free thiadiazole (TDA) and triazine (Trz) linked porous organic polymer (TDA-Trz-POP) having N- and S-rich surface. Powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR), solid state 13C magic angle spinning nuclear magnetic resonance (MAS-NMR) and X-ray photoelectron spectroscopic (XPS) analyses have been performed to predict its probable framework structure. This scrunch paper type TDA-Trz-POP shows an extravagant potential for the hydrogen evolution reaction (HER) with a low overpotential (129.2 mV w.r.t. RHE for 10 mA cm-2 current density) and low Tafel slope (82.1 mV deg-1). Again, this metal-free catalyst shows oxygen evolution reaction (OER) at 410 mV overpotential w.r.t RHE for 10 mA cm-2 current density with a lower Tafel slope of 104.5 mV deg-1. This bifunctional activity was further tested in two electrodes set-up under different pH conditions. The porosity seems to be a blessing in the electrocatalytic performance of this metal-free electrocatalyst material. Further, the mystery behind the activity of both HER and OER has been resolved through the density functional theory (DFT) analysis. This work provides an insight to the material scientists for low cost, metal-free material design for the efficient water splitting reaction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这里,我们回顾了通过液相电子显微镜(LP-EM)观察到的液体电解质中的电化学反应的要点。迫切需要电化学反应的原位微观观察,特别是解决各种电池问题。通过大量样品的各种电化学测量来评估电池性能。然而,有必要了解电池中发生的物理/化学现象,以阐明反应机理。因此,原位显微镜观察对于理解电池中发生的反应是有效的。在这里,我们专注于两种方法,液相(扫描)透射电子显微镜(LP-S/TEM)和液相扫描电子显微镜(LP-SEM),并总结两种方法的优缺点。
    Herein, we review notable points from observations of electrochemical reactions in a liquid electrolyte by liquid-phase electron microscopy. In situ microscopic observations of electrochemical reactions are urgently required, particularly to solve various battery issues. Battery performance is evaluated by various electrochemical measurements of bulk samples. However, it is necessary to understand the physical/chemical phenomena occurring in batteries to elucidate the reaction mechanisms. Thus, in situ microscopic observation is effective for understanding the reactions that occur in batteries. Herein, we focus on two methods, of the liquid phase (scanning) transmission electron microscopy and liquid phase scanning electron microscopy, and summarize the advantages and disadvantages of both methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    与催化过程和能源应用相关的紧迫问题加速了混合和智能材料的发展。MXenes是一类新的原子层状纳米结构材料,需要大量的研究。定制的形态,强导电性,良好的化学稳定性,大的表面体积比,可调结构,其中一些重要的特性使MXenes适用于各种电化学反应,包括甲烷的干重整,析氢反应,甲醇氧化反应,硫还原反应,Suzuki-Miyaura偶联反应,水煤气变换反应,等等。MXenes,另一方面,有团聚的根本缺点,以及较差的长期可回收性和稳定性。克服这些限制的一种可能性是纳米片或纳米颗粒与MXene的融合。在这里,关于合成的相关文献,催化稳定性和可重复使用性,讨论了几种基于MXene的纳米催化剂的应用,包括新型基于MXene的催化剂的优缺点。
    The urgent issues related to the catalytic processes and energy applications have accelerated the development of hybrid and smart materials. MXenes are a new family of atomic layered nanostructured materials that require considerable research. Tailorable morphologies, strong electrical conductivity, great chemical stability, large surface-to-volume ratios, tunable structures, among others are some significant characteristics that make MXenes appropriate for various electrochemical reactions, including dry reforming of methane, hydrogen evolution reaction, methanol oxidation reaction, sulfur reduction reaction, Suzuki-Miyaura coupling reaction, water-gas shift reaction, and so forth. MXenes, on the other hand, have a fundamental drawback of agglomeration, as well as poor long-term recyclability and stability. One possibility for overcoming the restrictions is the fusion of nanosheets or nanoparticles with MXenes. Herein, the relevant literature on the synthesis, catalytic stability and reusability, and applications of several MXene-based nanocatalysts are deliberated including the merits and cons of the newer MXene-based catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自从发现石墨烯以来,二维材料家族的研究一直是一个蓬勃发展的领域。金属磷硫族化物(MPX3)由于其独特的物理和化学性质而引起了新的关注。MPX3的优点,如可调分层结构,独特的电子特性,热力学上适当的能带排列和表面上丰富的催化活性位点,使MPX3材料在电催化方面具有巨大的潜力。在这次审查中,近年来MPX3电催化剂的应用,包括析氢反应,析氧反应,和氧还原反应,是总结的。结构性调节,化学掺杂和多材料复合,通常是有效和实用的研究方法,以进一步优化这些材料的催化性能,被介绍。最后,讨论了MPX3材料电催化应用的挑战和机遇。本报告旨在推动未来开发MPX3和相关电催化材料的努力。
    Since the discovery of graphene, research on the family of 2D materials has been a thriving field. Metal phosphorous chalcogenides (MPX3 ) have attracted renewed attention due to their distinctive physical and chemical properties. The advantages of MPX3 , such as tunable layered structures, unique electronic properties, thermodynamically appropriate band alignments and abundant catalytic active sites on the surface, make MPX3 material great potential in electrocatalysis. In this review, the applications of MPX3 electrocatalysts in recent years, including hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction, are summarized. Structural regulation, chemical doping and multi-material composite that are often effective and practical research methods to further optimize the catalytic properties of these materials, are introduced. Finally, the challenges and opportunities for electrocatalytic applications of MPX3 materials are discussed. This report aims to advance future efforts to develop MPX3 and related materials for electrocatalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Janus architectures have garnered great research efforts in recent years, leading to outstanding advances in electrocatalysis. Benefiting from the synergistic combination of their anisotropy which endows the manifestation of various co-existing electrochemical properties, and their compartmentalized structure that enables each functional domain to retain its inherent activity, with little to no interference from other domains, Janus architectures show great potential as exceptionally versatile electrocatalysts to complement a plethora of electrocatalytic processes. Thus, coupled with the growing interest in Janus architectures for electrocatalysis, it is imperative to investigate and reconsider their design strategies and future directions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电催化和电合成,转换电能并以化学形式储存它们,被认为是利用绿色可再生能源的有前途的技术。大多数研究集中在开发新的活性分子或先进的电极,以提高性能。然而,直接获取和电子转移将受到电极固有特性的限制。介绍氧化还原介体,在不改变最终产品的情况下,作为中间电子载体或储库,提供了一种独特的方法来加速这些能量转换的电化学性能。这篇综述概述了使用氧化还原介体的电催化和电合成的最新发展,并对这些系统的原理和建设进行了全面的讨论。
    Electrocatalysis and electrosynthesis, which convert the electrical energy and store them in the chemical forms, have been considered as promising technologies to utilize green renewable energy sources. Most of the studies focused on developing novel active molecules or advanced electrodes to improve the performance. However, the direct acquisition and electron transferring will be limited by the intrinsic characters of the electrodes. The introduce of redox mediators, which are served as the intermediate electron carriers or reservoirs without changing the final products, provide a unique approach to accelerate the electrochemical performance of these energy conversions. This review provides an overview of the recent development of electrocatalysis and electrosynthesis by using redox mediators, and provides a comprehensive discussion toward focusing on the principles and construction of these systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电催化析氢反应(HER)对于绿色氢生成至关重要,并且表现出难以理解的独特的pH依赖性动力学。对电化学界面的分子水平理解对于开发更有效的电化学过程至关重要。在这里,我们利用专门的表面特异性电传输光谱(ETS)方法来探测Pt-地表水质子化状态,并通过实验确定表面水合pKa[公式:见正文]4.3。使用反应力场(ReaxFF)的量子力学(QM)和反应动力学分子动力学(RMD)计算证实了Pt表面附近的水合氢(H3O[公式:见正文])的富集,并预测表面水合氢pKa为2.5至4.4,证实了实验结果。重要的是,观察到的Pt表面水合pKa与pH依赖性HER动力学密切相关,在较低pH下的质子化表面状态有利于快速塔菲尔动力学,塔菲尔斜率为每十年30mV,在较高pH下的去质子化表面状态遵循Volmer-step限制动力学,塔菲尔斜率为每十年120mV,提供对pH依赖性HER动力学的稳健和精确的解释。这些见解可能有助于设计用于可再生能源转换的改进的电催化剂。
    Electrocatalytic hydrogen evolution reaction (HER) is critical for green hydrogen generation and exhibits distinct pH-dependent kinetics that have been elusive to understand. A molecular-level understanding of the electrochemical interfaces is essential for developing more efficient electrochemical processes. Here we exploit an exclusively surface-specific electrical transport spectroscopy (ETS) approach to probe the Pt-surface water protonation status and experimentally determine the surface hydronium pKa [Formula: see text] 4.3. Quantum mechanics (QM) and reactive dynamics using a reactive force field (ReaxFF) molecular dynamics (RMD) calculations confirm the enrichment of hydroniums (H3O[Formula: see text]) near Pt surface and predict a surface hydronium pKa of 2.5 to 4.4, corroborating the experimental results. Importantly, the observed Pt-surface hydronium pKa correlates well with the pH-dependent HER kinetics, with the protonated surface state at lower pH favoring fast Tafel kinetics with a Tafel slope of 30 mV per decade and the deprotonated surface state at higher pH following Volmer-step limited kinetics with a much higher Tafel slope of 120 mV per decade, offering a robust and precise interpretation of the pH-dependent HER kinetics. These insights may help design improved electrocatalysts for renewable energy conversion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    电化学反应的可视化对于全面理解电化学反应机理和精确表征动态电化学过程至关重要。在这里,我们提出了一个简单的装置,结合光寻址电位传感器(LAPS)成像和微电极作为一个通用的电分析平台的无标记传感和成像的电化学反应。在这个装置中,两个微电极组装在LAPS芯片上。可以使用对反应产物敏感的LAPS芯片对微电极上发生的电化学反应进行定性和定量观察和可视化。进行验证以监测微电极周围的水电解和亚铁氰化钾氧化的影响,分别。我们相信,这项研究将为电化学反应的可视化和监测提供一个极好的平台,并将LAPS成像的应用范围拓宽到广泛适用于多个领域的通用电分析工具。
    Visualization of the electrochemical reaction is essential for comprehensively understanding the electrochemical reaction mechanism and precisely characterizing dynamic electrochemical processes. Herein, we propose a simple device that combines light-addressable potentiometric sensor (LAPS) imaging and microelectrodes to serve as a general electroanalysis platform for the label-free sensing and imaging of electrochemical reactions. In this device, two microelectrodes are assembled on the LAPS chip. Electrochemical reactions occurring on the microelectrodes can be qualitatively and quantitatively observed and visualized using a LAPS chip that is sensitive to the reaction products. Validations were performed to monitor the effect of water electrolysis and potassium ferrocyanide oxidation surrounding the microelectrodes, respectively. We believe that this study will provide an excellent platform for the visualization and monitoring of electrochemical reactions and broaden the application scope of LAPS imaging to a general electroanalysis tool that is widely applicable in several fields.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号