electrochemical reactions

  • 文章类型: Journal Article
    本研究描述了基于过氧化氢酶活性的用于水中微生物监测的电位传感器的开发。该传感器包括MnO2修饰的电极,该电极对0.16M至3.26M的过氧化氢(H2O2)线性响应。当H2O2溶液掺加过氧化氢酶或产生过氧化氢酶的微生物分解H2O2时,电极电势下降。该传感器对不同的细菌及其过氧化氢酶活性有响应。电化学传感器对大肠杆菌的检测下限(LOD)为11CFU/ml,12CFU/ml的柠檬酸杆菌,和23CFU/ml的铜绿假单胞菌。该传感器在3.49、3.02和4.24mV/cm2dec对大肠杆菌显示出高灵敏度,C.年轻,还有铜绿假单胞菌,分别。非生物感测电极可以多次使用而不改变响应电势(高达100个读数),具有超过六个月的保质期。响应时间是几秒钟,总测试时间为5分钟。此外,该传感器有效地测试了实际样品(饮用水和灰水),这使得它成为一个快速和可靠的传感工具。因此,这项研究提供了一种有前途的高灵敏度的水监测工具,稳定性,良好的检测限,和来自其他水污染物的最小干扰。
    The present study describes the development of a potentiometric sensor for microbial monitoring in water based on catalase activity. The sensor comprises a MnO2-modified electrode that responds linearly to hydrogen peroxide (H2O2) from 0.16 M to 3.26 M. The electrode potential drops when the H2O2 solution is spiked with catalase or catalase-producing microorganisms that decompose H2O2. The sensor is responsive to different bacteria and their catalase activities. The electrochemical sensor exhibits a lower limit of detection (LOD) for Escherichia coli at 11 CFU/ml, Citrobacter youngae at 12 CFU/ml, and Pseudomonas aeruginosa at 23 CFU/ml. The sensor shows high sensitivity at 3.49, 3.02, and 4.24 mV/cm2dec for E. coli, C. youngae, and P. aeruginosa, respectively. The abiotic sensing electrode can be used multiple times without changing the response potential (up to 100 readings) with a shelf-life of over six months. The response time is a few seconds, with a total test time of 5 min. Additionally, the sensor effectively tested actual samples (drinking and grey water), which makes it a quick and reliable sensing tool. Therefore, the study offers a promising water monitoring tool with high sensitivity, stability, good detection limit, and minimum interference from other water contaminants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    电催化析氢反应(HER)对于绿色氢生成至关重要,并且表现出难以理解的独特的pH依赖性动力学。对电化学界面的分子水平理解对于开发更有效的电化学过程至关重要。在这里,我们利用专门的表面特异性电传输光谱(ETS)方法来探测Pt-地表水质子化状态,并通过实验确定表面水合pKa[公式:见正文]4.3。使用反应力场(ReaxFF)的量子力学(QM)和反应动力学分子动力学(RMD)计算证实了Pt表面附近的水合氢(H3O[公式:见正文])的富集,并预测表面水合氢pKa为2.5至4.4,证实了实验结果。重要的是,观察到的Pt表面水合pKa与pH依赖性HER动力学密切相关,在较低pH下的质子化表面状态有利于快速塔菲尔动力学,塔菲尔斜率为每十年30mV,在较高pH下的去质子化表面状态遵循Volmer-step限制动力学,塔菲尔斜率为每十年120mV,提供对pH依赖性HER动力学的稳健和精确的解释。这些见解可能有助于设计用于可再生能源转换的改进的电催化剂。
    Electrocatalytic hydrogen evolution reaction (HER) is critical for green hydrogen generation and exhibits distinct pH-dependent kinetics that have been elusive to understand. A molecular-level understanding of the electrochemical interfaces is essential for developing more efficient electrochemical processes. Here we exploit an exclusively surface-specific electrical transport spectroscopy (ETS) approach to probe the Pt-surface water protonation status and experimentally determine the surface hydronium pKa [Formula: see text] 4.3. Quantum mechanics (QM) and reactive dynamics using a reactive force field (ReaxFF) molecular dynamics (RMD) calculations confirm the enrichment of hydroniums (H3O[Formula: see text]) near Pt surface and predict a surface hydronium pKa of 2.5 to 4.4, corroborating the experimental results. Importantly, the observed Pt-surface hydronium pKa correlates well with the pH-dependent HER kinetics, with the protonated surface state at lower pH favoring fast Tafel kinetics with a Tafel slope of 30 mV per decade and the deprotonated surface state at higher pH following Volmer-step limited kinetics with a much higher Tafel slope of 120 mV per decade, offering a robust and precise interpretation of the pH-dependent HER kinetics. These insights may help design improved electrocatalysts for renewable energy conversion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在氧化还原反应中,电化学电势差(Δμ)是带电物质从一个相转移到另一个相的驱动力。在锂离子电池(LIB)中,电子和锂离子的Δμ值在电极/电解质界面的电荷转移动力学中起着重要作用。由于缺乏合适的测量技术,鲜为人知的是,在LIB操作期间,Δμ如何影响在固/液界面发生的氧化还原反应。在这里,我们概述了不同电位之间的关系,并显示了如何通过测量电解质核心水平的动能(KE)位移,使用环境压力光电子能谱(APPES)来跟踪固/液界面上的变化。在双电层充电期间和固体电解质相间形成期间,KE位移对施加电压的线性依赖性为〜1eV/V。这与理想的可极化界面的预期结果一致。在锂化过程中,坡度急剧变化。我们提出了一个基于固/液界面上电荷转移的模型来解释这一点。
    The electrochemical potential difference (Δμ̅) is the driving force for the transfer of a charged species from one phase to another in a redox reaction. In Li-ion batteries (LIBs), Δμ̅ values for both electrons and Li-ions play an important role in the charge-transfer kinetics at the electrode/electrolyte interfaces. Because of the lack of suitable measurement techniques, little is known about how Δμ̅ affects the redox reactions occurring at the solid/liquid interfaces during LIB operation. Herein, we outline the relations between different potentials and show how ambient pressure photoelectron spectroscopy (APPES) can be used to follow changes in Δμ̅e over the solid/liquid interfaces operando by measuring the kinetic energy (KE) shifts of the electrolyte core levels. The KE shift versus applied voltage shows a linear dependence of ∼1 eV/V during charging of the electrical double layer and during solid electrolyte interphase formation. This agrees with the expected results for an ideally polarizable interface. During lithiation, the slope changes drastically. We propose a model to explain this based on charge transfer over the solid/liquid interface.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这里,钛(Ti3+)自掺杂钛酸锶(SrTiO3),通过简单有效的方法制备了具有2.6eV的带隙和良好的光催化特性的所谓的蓝色SrTiO3。对于电化学研究,应用电泳沉积法在(掺氟氧化锡)FTO导电基板上制备SrTiO3薄膜。优化了20V的电泳电压和10分钟的过程持续时间,以在FTO上达到透明且均匀的涂层。与纯SrTiO3电极相比,蓝色SrTiO3显示出较低的电阻(电荷转移电阻为6.38Ωcm-2)和较高的电子迁移率(电流密度值为0.25mAcm-2)。这些发现可能为开发高性能可见光光催化剂提供新的见解。
    Herein, titanium (Ti3+) self-doped strontium titanate (SrTiO3), so-called blue SrTiO3, with a bandgap of 2.6 eV and favorable photocatalytic characteristics was fabricated through a facile and effective method. For electrochemical investigations, the electrophoretic deposition was applied to produce SrTiO3 thin films on (fluorine-doped tin oxide) FTO conductive substrates. The electrophoretic voltage of 20 V and a process duration of 10 min were optimized to reach transparent and uniform coatings on FTO. The blue SrTiO3 reveals lower resistance (charge transfer resistance of 6.38 Ω cm-2) and higher electron mobility (current density value of 0.25 mA cm-2) compared to a pure SrTiO3 electrode. These findings may provide new insights for developing high-performance visible light photocatalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    锂金属阳极对下一代电池技术有着巨大的承诺,但众所周知很难使用。解决这一挑战的关键在于形成稳定的固体电解质界面(SEI)层的能力。为了进一步解决潜在的安全问题,在不易燃的电解质中实现这一目标至关重要。基于先前在常规碳酸酯基电解质中形成稳定SEI的成功,在这里,我们报告可逆的锂剥离/电镀可以在磷酸三乙酯(TEP)中实现,已知的阻燃剂。我们方法的关键促成因素是氧气的引入,电化学还原后,会引起TEP的初始分解,并产生Li3PO4和聚磷酸盐。重要的是,反应是自我限制的,并且所得材料通过限制枝晶形成来调节Li电镀。实际上,我们在不可燃的电解质中获得了Li金属上的功能性SEI。当在对称的Li198Li电池中进行测试时,在0.5mAcm-2的电流密度下,测量了300多个剥离/电镀周期。还制造并测试了原型Li-O2和锂离子电池以进一步支持该策略的有效性。通过密度泛函理论(DFT)研究了SEI形成的机理,并通过对中间体和产品的成功检测证实了预测。
    Lithium metal anode holds great promises for next-generation battery technologies but is notoriously difficult to work with. The key to solving this challenge is believed to lie in the ability of forming stable solid-electrolyte interphase (SEI) layers. To further address potential safety issues, it is critical to achieve this goal in nonflammable electrolytes. Building upon previous successes in forming stable SEI in conventional carbonate-based electrolytes, here we report that reversible Li stripping/plating could be realized in triethyl phosphate (TEP), a known flame retardant. The critical enabling factor of our approach was the introduction of oxygen, which upon electrochemical reduction induces the initial decomposition of TEP and produces Li3 PO4 and poly-phosphates. Importantly, the reaction was self-limiting, and the resulting material regulated Li plating by limiting dendrite formation. In effect, we obtained a functional SEI on Li metal in a nonflammable electrolyte. When tested in a symmetric Li∥Li cell, more than 300 cycles of stripping/plating were measured at a current density of 0.5 mA cm-2 . Prototypical Li-O2 and Li-ion batteries were also fabricated and tested to further support the effectiveness of this strategy. The mechanism by which the SEI forms was studied by density functional theory (DFT), and the predictions were corroborated by the successful detection of the intermediates and products.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    电极表面的固-气相互作用决定了固体氧化物燃料电池和电解槽的效率。这里,在模型系统La0.8Sr0.2Co0.2Fe0.8O3中研究了表面气体动力学与钙钛矿电极晶体取向之间的相关性。气体交换动力学的特征是合成外延半电池几何结构,其中产生了三个单变体表面[即,La0.8Sr0.2Co0.2Fe0.8O3/La0.9Sr0.1Ga0.95Mg0.05O3-δ/SrRuO3/SrTiO3(001),(110),和(111)]。电化学阻抗谱和电导率弛豫测量揭示了气体交换动力学的强烈表面取向依赖性,其中(111)-取向的表面表现出与(001)-取向的表面相比>3倍的活性。与氧分压(pO2)相关的电化学阻抗谱研究表明,尽管三个表面具有不同的气体交换动力学,反应机理和限速步骤是相同的(即,电荷转移到双原子氧物种)。第一性原理计算表明,空位和吸附在各个表面的形成能是不同的,并且受表面极性的影响。最后,基于同步加速器,环境压力X射线光谱法揭示了不同表面取向之间的不同电子变化和表面化学。一起来看,薄膜外延提供了一种有效的方法来控制和理解电极反应性,最终证明(111)表面表现出高密度的活性表面位点,从而导致更高的活性。
    Solid-gas interactions at electrode surfaces determine the efficiency of solid-oxide fuel cells and electrolyzers. Here, the correlation between surface-gas kinetics and the crystal orientation of perovskite electrodes is studied in the model system La0.8 Sr0.2 Co0.2 Fe0.8 O3 . The gas-exchange kinetics are characterized by synthesizing epitaxial half-cell geometries where three single-variant surfaces are produced [i.e., La0.8 Sr0.2 Co0.2 Fe0.8 O3 /La0.9 Sr0.1 Ga0.95 Mg0.05 O3-δ /SrRuO3 /SrTiO3 (001), (110), and (111)]. Electrochemical impedance spectroscopy and electrical conductivity relaxation measurements reveal a strong surface-orientation dependency of the gas-exchange kinetics, wherein (111)-oriented surfaces exhibit an activity >3-times higher as compared to (001)-oriented surfaces. Oxygen partial pressure ( p O 2 )-dependent electrochemical impedance spectroscopy studies reveal that while the three surfaces have different gas-exchange kinetics, the reaction mechanisms and rate-limiting steps are the same (i.e., charge-transfer to the diatomic oxygen species). First-principles calculations suggest that the formation energy of vacancies and adsorption at the various surfaces is different and influenced by the surface polarity. Finally, synchrotron-based, ambient-pressure X-ray spectroscopies reveal distinct electronic changes and surface chemistry among the different surface orientations. Taken together, thin-film epitaxy provides an efficient approach to control and understand the electrode reactivity ultimately demonstrating that the (111)-surface exhibits a high density of active surface sites which leads to higher activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    本文介绍了磨料技术领域的重要认知和使用价值,特别是在开发具有金属键的超硬砂轮的电化学修整新方法方面。认知值主要涉及对砂轮金属键化合物的电化学消化和砂轮(CSGW)切割表面产物的胶结的理论背景的阐述。认知值还涉及确定数学关系,该数学关系描述了修整技术条件对超硬砂轮切削能力成形的影响。另一方面,有用的价值是指工业实施的详细方法和设备,用于使用交流电(ECDGW-AC)对超硬砂轮进行电化学修整。用于实现该方法的装置的成本较低并且可以在生产条件下应用。本文提出的新成就是:阐述了一种用于超硬砂轮(ECDGW-AC)的电化学修整的新方法和设备,选择低浓度化合物的电解质,使用X射线分析对砂轮金属键化合物进行消化和对CSGW产品进行涂胶的测试,以及在详细阐述的新敷料过程中发生的化学反应的确定,阐述了描述该过程的工艺条件对超硬砂轮修整速度和切削能力成形的影响的数学关系,以及使用ECDGW-AC方法修整超硬砂轮的工艺测试性能。该方法可在环境温度下使用,不会对砂轮切割表面的磨粒造成热损伤,不仅可用于修整超硬砂轮,而且可用于校正其几何偏差。
    This article introduces significant cognitive and usable values in the field of abrasive technology especially in the development of new methods of the electrochemical dressing of superhard grinding wheels with metal bonds. Cognitive values mainly concern the elaboration of the theoretical backgrounds of the electrochemical digestion of compounds of grinding wheel metal bond and gumming up products of the cutting surface of grinding wheel (CSGW). Cognitive values also deal with determining the mathematical relationships describing the influence of technological conditions of dressing on shaping of cutting abilities of superhard grinding wheels. On the other hand, the useful values refer to the industry implementation of the elaborated method and equipment for the electrochemical dressing of suparhard grinding wheels using alternating current (ECDGW-AC). The cost of the device for the realization of this process is low and can be applied in the production conditions. The novel achievements presented in the article are: the elaboration of a new method and equipment for electrochemical dressing of superhard grinding wheels (ECDGW-AC), the selection of electrolytes of low concentration of chemical compounds, tests concerning the digestion of grinding wheel metal bond compounds and gumming up products of CSGW using X-ray analysis, as well as the determination of chemical reactions taking place during elaborated new dressing process, the elaboration of mathematical relationships describing influence of technological conditions of this process on dressing speed and shaping of cutting abilities of superhard grinding wheels, and the performance of technological tests of dressing of superhard grinding wheels using ECDGW-AC method. The elaborated method can be used in ambient temperature and does not cause thermal damages of abrasive grains of cutting surface of grinding wheel and is useful not only for dressing super hard grinding wheels but also for correcting their geometrical deviations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    在生物系统中广泛研究了由表面能和多尺度微/纳米结构的合作引起的超润湿界面。从生物界面获得的基本理解增强了在不同维度下对润湿性的控制,如2D曲面,1D光纤和通道,和3D架构,从而允许操纵液体的传输物理,气体,和离子,深刻影响化学反应和材料制造。在这种情况下,突出了基于超润湿界面的新化学的进展,从大规模运输动力学开始,包括液体,气体,和离子传输。在以下各节中,讨论了超润湿性介导的传输动力学对化学反应和材料制造的影响。超润湿性科学大大提高了化学反应的效率,包括光催化,生物电子,电化学,和有机催化反应,通过实现高效的大众运输。对于材料制造,超润湿界面在操纵固体表面上液体的运输和微流体动力学方面至关重要,导致低维单晶阵列和高质量聚合物薄膜的空间调控生长。最后,提出了对未来方向的看法。
    Superwetting interfaces arising from the cooperation of surface energy and multiscale micro/nanostructures are extensively studied in biological systems. Fundamental understandings gained from biological interfaces boost the control of wettability under different dimensionalities, such as 2D surfaces, 1D fibers and channels, and 3D architectures, thus permitting manipulation of the transport physics of liquids, gases, and ions, which profoundly impacts chemical reactions and material fabrication. In this context, the progress of new chemistry based on superwetting interfaces is highlighted, beginning with mass transport dynamics, including liquid, gas, and ion transport. In the following sections, the impacts of the superwettability-mediated transport dynamics on chemical reactions and material fabrication is discussed. Superwettability science has greatly enhanced the efficiency of chemical reactions, including photocatalytic, bioelectronic, electrochemical, and organic catalytic reactions, by realizing efficient mass transport. For material fabrication, superwetting interfaces are pivotal in the manipulation of the transport and microfluidic dynamics of liquids on solid surfaces, leading to the spatially regulated growth of low-dimensional single-crystalline arrays and high-quality polymer films. Finally, a perspective on future directions is presented.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    电化学反应的均相催化,与当代能源挑战有关,通常涉及质子耦合的电子转移序列。这个想法很快出现了,安装质子供体(用于还原,或氧化的受体)在催化剂分子内的效率方面应该是有益的,因为它将更接近该过程的神经中枢(在过渡金属络合物催化剂的情况下通常是金属)。如果这个质子继电器确实完成了这项工作,它在每个催化回路的末端失去了质子,因此必须重新质子化(对于还原,或去质子化以进行氧化)在新的催化回路开始之前,来自溶液的酸(或碱)。因此,印象可能是存在零和游戏。情况并非如此的条件可能需要,相比之下,相当大的催化作用。这也将允许解释为什么质子是用于该任务的特别合适的试剂。
    Homogeneous catalysis of electrochemical reactions, related to contemporary energy challenges, often involves proton-coupled electron transfer sequences. The idea rapidly emerged that installing the proton donor (for reductions, or acceptor for oxidations) inside the catalyst molecule should be beneficial in terms of efficiency, as it would then be closer to the nerve center of the process (usually the metal in the case of transition metal complex catalysts). If this proton relay has indeed done the job, it has lost its proton at the end of each catalytic loop, and must therefore be reprotonated (for reductions, or deprotonated for oxidations) from acid (or base) from the solution before a new catalytic loop can start. The impression may thus be that there is a zero-sum game. The conditions under which this is not the case may entail, in contrast, a considerable boosting of catalysis. This will also allow explain why the proton is such a specifically appropriate agent for this task.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    污泥处理和处置已成为中国的关键环境问题。电脱水(ED)是一种有吸引力的技术,用于增强脱水能力和改善废物活性污泥(WAS)处理的可持续性。然而,电辅助的机械脱水过程消耗更多的能量,并且由电化学反应引起的胞外聚合物(EPS)溶解可导致滤布的堵塞。碳基材料(CBM)如活性炭和石墨具有导电性和可吸附生物聚合物的发达的孔结构。因此,添加CBM有望通过增强污泥电导率和可过滤性来改善燃料处理的WAS电脱水性能。在这项研究中,我们评估了三种碳材料(AC-0,AC-5和石墨)对污泥电脱水行为和污泥饼可燃性的影响。结果表明,CBMs促进了WAS电脱水的性能,碳材料对污泥电脱水的促进作用与碳材料的电导率成正比,和碳材料可以增加污泥絮凝物的电泳迁移率和电渗效应。此外,CBM可以吸附溶解的EPS,从而减轻过滤介质的堵塞和过滤阻力。添加CBM还降低了电脱水过程中除水的能耗,并提高了污泥饼的热值和可持续燃烧时间。我们的方法可以促进电脱水过程中脱水污泥饼的资源化利用。
    Sludge treatment and disposal have become critical environmental issues in China. Electro-dewatering (ED) is an attractive technology for enhancing dewaterability and improving the sustainability of waste activated sludge (WAS) handling. However, electrically assisted mechanical dewatering processes consume more energy and the extracellular polymeric substance (EPS) dissolution caused by electrochemical reactions can lead to clogging of the filter cloth. Carbon-based materials (CBMs) such as activated carbon and graphite have electrical conductivity and well-developed pore structures which can adsorb the biopolymers. Therefore, addition of CBMs is expected to improve WAS electro-dewatering performance for fuel treatment by enhancing sludge conductivity and filterability. In this study, we evaluated the effects of the three carbon materials (AC-0, AC-5, and graphite) on sludge electro-dewatering behavior and the flammability of sludge cakes. The results showed that CBMs promote the performance of WAS electro-dewatering, and the promoting effect of the carbon materials on the sludge electro-dewatering is proportional to the electrical conductivity of the carbon material, and carbon materials can increase the electrophoretic mobility of sludge flocs and the electro-osmotic effect. Moreover, CBMs can adsorb the dissolved EPS, thus alleviate the plugging and filtration resistance of the filter medium. The addition of CBMs also decreases the energy consumption for water removal during the electro-dewatering process and improves the calorific value and sustainable combustion time of the sludge cake. Our approach can facilitate the resource utilization of the dewatered sludge cake in electro-dewatering processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号