contact resistance

接触电阻
  • 文章类型: Journal Article
    铱,质子交换膜水电解(PEMWE)中使用最广泛的阳极催化剂,由于价格高,供应有限,必须最低限度地使用。然而,由于异常大的阳极极化,减少铱负载带来了挑战。在这里,我们提出了一种基于一维铱纳米纤维的阳极催化剂层(CL),能够在1.86V下实现3Acm-2的高电流密度操作,即使在超低负载(0.07mgIrcm-2)。即使使用无Pt涂层的多孔传输层(PTL)也可以保持性能,因为我们的纳米纤维CL避免了由TiPTL上的天然氧化物引起的界面电子传输问题。我们将此归因于纳米纤维CL的低功函数和低离聚物暴露表面,这防止了在天然氧化物界面处形成肖特基接触。这些结果突出了优化低铱负载PEMWE的CL/PTL界面的电子性质的重要性。
    Iridium, the most widely used anode catalyst in proton exchange membrane water electrolysis (PEMWE), must be used minimally due to its high price and limited supply. However, reducing iridium loading poses challenges due to abnormally large anode polarization. Herein, we present an anode catalyst layer (CL) based on a one-dimensional iridium nanofiber that enables a high current density operation of 3 A cm-2 at 1.86 V, even at an ultralow loading (0.07 mgIr cm-2). The performance is maintained even with a Pt coating-free porous transport layer (PTL) because our nanofiber CL circumvents the interfacial electron transport problem caused by the native oxide on the Ti PTL. We attribute this to the low work function and the low-ionomer-exposed surface of the nanofiber CL, which prevent the formation of Schottky contact at the native oxide interface. These results highlight the significance of optimizing the electronic properties of the CL/PTL interface for low-iridium-loading PEMWE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自下而上合成的原子精确石墨烯纳米带(GNR)对于高性能场效应晶体管(FET)具有良好的电子性能。已经证明了用GNR制造FET(GNRFET)的可行性,不断努力,旨在进一步提高他们的业绩。然而,它们的长期稳定性和可靠性仍未得到探索,这与它们在实际应用中的性能一样重要。在这项工作中,我们用9个原子宽的扶手椅GNR(9-AGNRFET)制造了短通道FET。我们发现,9-AGNRFET的导通状态(ION)电流性能在连续的全晶体管导通和关断逻辑周期内显着恶化,这既没有被证明也没有被考虑过。为了解决这个问题,我们直接在这些器件上沉积了10nm厚的氧化铝(Al2O3)原子层沉积(ALD)层。的完整性,兼容性,电气性能,稳定性,和可靠性,对Al2O3沉积之前和/或之后的GNRFET进行了全面研究。结果表明,观察到的电气设备性能下降很可能是由于接触电阻在多个测量周期内的下降。我们成功地证明了具有Al2O3层的器件在多达数千个连续全循环下运行良好而没有任何降解。我们的研究为GNR晶体管的稳定性和可靠性提供了宝贵的见解,这可以促进它们大规模集成到实际应用中。
    Atomically precise graphene nanoribbons (GNRs) synthesized from the bottom-up exhibit promising electronic properties for high-performance field-effect transistors (FETs). The feasibility of fabricating FETs with GNRs (GNRFETs) has been demonstrated, with ongoing efforts aimed at further improving their performance. However, their long-term stability and reliability remain unexplored, which is as important as their performance for practical applications. In this work, we fabricated short-channel FETs with nine-atom-wide armchair GNRs (9-AGNRFETs). We revealed that the on-state (ION) current performance of the 9-AGNRFETs deteriorates significantly over consecutive full transistor on and off logic cycles, which has neither been demonstrated nor previously considered. To address this issue, we deposited a thin ∼10 nm thick atomic layer deposition (ALD) layer of aluminum oxide (Al2O3) directly on these devices. The integrity, compatibility, electrical performance, stability, and reliability, of the GNRFETs before and/or after Al2O3 deposition were comprehensively studied. The results indicate that the observed decline in electrical device performance is most likely due to the degradation of contact resistance over multiple measurement cycles. We successfully demonstrated that the devices with the Al2O3 layer operate well up to several thousand continuous full cycles without any degradation. Our study offers valuable insights into the stability and reliability of GNR transistors, which could facilitate their large-scale integration into practical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钙钛矿/电子传输层(ETL)/透明导电氧化物(TCO)界面处的不完美电荷行为限制了钙钛矿/硅串联太阳能电池的进一步性能改善。在这里,为了解决这个问题,我们在ETL和TCO之间沉积了氧化铟锡中间层。具体来说,中间层是使用全物理和无H2O方法制备的,电子束蒸发,这可以避免对下面的钙钛矿和ETL层的任何潜在损害。此外,夹层的组成可以很容易地调整通过改变蒸发器组件,使我们能够调节ETL/TCO接口的接触电阻和能级对准。因此,所得的钙钛矿/硅串联太阳能电池表现出令人印象深刻的功率转换效率为30.8%(认证为30.3%)。此外,在环境条件下连续运行1078小时后,设备保留了其初始PCE的98%,代表最稳定,最有效的钙钛矿/硅串联太阳能电池之一。本文受版权保护。保留所有权利。
    The imperfect charge behavior at the interfaces of perovskite/electron-transport layer (ETL)/transparent conducting oxide (TCO) limits the further performance improvement of perovskite/silicon tandem solar cells. Herein, an indium tin oxide interlayer is deposited between ETL and TCO to address this issue. Specifically, the interlayer is prepared using an all-physical and H2O-free method, electron-beam evaporation, which can avoid any potential damage to the underlying perovskite and ETL layers. Moreover, the interlayer\'s composition can be readily tuned by changing the evaporator component, enabling authors to regulate the contact resistance and energy-level alignment of the ETL/TCO interface. Consequently, the resultant perovskite/silicon tandem solar cells exhibit an impressive power conversion efficiency (PCE) of 30.8% (certified 30.3%). Moreover, the device retains 98% of its initial PCE after continuous operation under ambient conditions for 1078 h, representing one of the most stable and efficient perovskite/silicon tandem solar cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对于N型隧道氧化物钝化接触硅太阳能电池,最佳的Ag/Al-Si接触界面是提高效率的关键。然而,Ag和Al在界面上的具体作用尚未清楚阐明。因此,这项工作深入研究了Ag/Al浆料的烧结过程,并研究了Ag/Al-Si界面结构对接触质量的影响。通过将TeO2掺入PbO基Ag/Al浆料中,可以调节Ag/Al-Si界面结构。可以发现TeO2加速了Ag粉末的烧结并增加了玻璃层中的Ag胶体。同时阻碍熔融Al的扩散。这导致Ag/Al-Si界面附近的Al含量降低和Al进入Si的扩散距离缩短。值得注意的是,可以证明,Al在Si层中的扩散比Ag胶体的沉淀更有效地降低了接触电阻。因此,PbO基Ag/Al浆料,这有利于铝的扩散,导致太阳能电池具有较低的接触电阻和串联电阻,更高的填充因子,和优越的光电转换效率。简而言之,这项工作对于优化硅太阳能电池和其他半导体器件的金属化具有重要意义。
    For N-type tunnel-oxide-passivated-contact silicon solar cells, optimal Ag/Al-Si contact interface is crucial to improve the efficiency. However, the specific roles of Ag and Al at the interface have not been clearly elucidated. Hence, this work delves into the sintering process of Ag/Al paste and examines the impact of the Ag/Al-Si interface structure on contact quality. By incorporating TeO2 into PbO-based Ag/Al paste, the Ag/Al-Si interface structure can be modulated. It can be found that TeO2 accelerates the sintering of Ag powder and increases Ag colloids within glass layer, while it simultaneously impedes the diffusion of molten Al. It leads to a reduced Al content near the Ag/Al-Si interface and a shorter diffusion distance of Al into Si. Notably, it can be demonstrated that the diffusion of Al in Si layer is more effective to reduce the contact resistance than the precipitation of Ag colloids. Therefore, the PbO-based Ag/Al paste, which favors Al diffusion, leads to solar cells with lower contact resistance and series resistance, higher fill factor, and superior photoelectric conversion efficiency. In brief, this work is significant for optimizing metallization of silicon solar cells and other semiconductor devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微机电系统(MEMS)欧姆接触开关被认为是无线通信应用的有希望的候选者。MEMS开关的寿命与微触点的可靠性和性能直接相关。在这项工作中,开发了一种改进的微接触测试夹具,具有高致动速率(KHz)和高精度位置控制(nm)和力(nN)控制。这里,我们收集了来自初始接触测试(ICT)的微接触性能数据和来自冷开关测试(CST)的微接触可靠性数据.要使用我们的测试夹具执行这些测试,我们制造的MEMS微接触测试结构与相对较高的杨氏模量电镀镍(Ni)基,带有Au/RuO2双金属微触点的固定-固定梁结构。在ICT测试中,这些结构的特征为200-1000µN的力。在CST测试中,测试的微接触以1KHz的循环速率存活超过2亿次循环,稳定的接触电阻值介于3.8-5.2Ω之间。这些实验验证了我们的微接触测试夹具的潜力,并将促进对先进微触点的进一步研究,以提高MEMS开关的可靠性。
    Microelectromechanical systems (MEMS) ohmic contact switches are considered to be a promising candidate for wireless communication applications. The longevity of MEMS switches is directly related to the reliability and performance of microcontacts. In this work, an improved microcontact test fixture with high actuation rates (KHz) and highly precise position control (nm) and force (nN) control was developed. Here, we collected microcontact performance data from initial contact tests (ICT) and microcontact reliability data from cold switched tests (CST). To perform these tests with our test fixture, we fabricated MEMS microcontact test structures with relatively high Young\'s modulus electroplated Nickel (Ni)-based, fixed-fixed beam structure with Au/RuO2 bimetallic microcontacts. These structures were characterized for forces ranging from 200-1000 µN in ICT tests. In a CST test, the tested microcontact survived more than 200 million cycles at a 1 KHz cycle rate, with a stable contact resistance value ranging between 3.8-5.2 Ω. These experiments validate the potentiality of our microcontact test fixture, and will facilitate further investigation on advanced microcontacts to enhance the MEMS switch\'s reliability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    接触电阻是2D材料社区面临的多方面挑战。大的肖特基势垒高度和间隙状态钉扎是活跃的障碍,需要集成的方法来实现基于2D材料的高性能电子器件的开发。在这项工作中,我们提出了具有全范德华电极和介电界面的半导体PtSe2场效应晶体管。我们用石墨触点,在室温下,电流高于100μAμm-1,迁移率为50cm2V-1s-1,在10K下,迁移率为400cm2V-1s-1。器件表现出高稳定性,最大滞后宽度低于36mVnm-1。发现石墨-PtSe2界面处的接触电阻低于700Ωμm。我们的结果表明,PtSe2是实现仅使用2D材料构建的高性能2D电路的有希望的候选者。
    Contact resistance is a multifaceted challenge faced by the 2D materials community. Large Schottky barrier heights and gap-state pinning are active obstacles that require an integrated approach to achieve the development of high-performance electronic devices based on 2D materials. In this work, we present semiconducting PtSe2 field effect transistors with all-van-der-Waals electrode and dielectric interfaces. We use graphite contacts, which enable high ION/IOFF ratios up to 109 with currents above 100 μA μm-1 and mobilities of 50 cm2 V-1 s-1 at room temperature and over 400 cm2 V-1 s-1 at 10 K. The devices exhibit high stability with a maximum hysteresis width below 36 mV nm-1. The contact resistance at the graphite-PtSe2 interface is found to be below 700 Ω μm. Our results present PtSe2 as a promising candidate for the realization of high-performance 2D circuits built solely with 2D materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于减少的栅极静电和增加的电荷载流子散射,在3D半导体晶体内追求亚1nm场效应晶体管(FET)沟道面临挑战。2D半导体,以过渡金属二硫属化合物为例,提供一个有希望的替代方案。然而,非理想,例如2DFET中的多余低频噪声(LFN),给它们的实现和商业化带来了巨大的障碍。在这项研究中,通过设计金属2D半导体接触和亚间隙态密度(DOS),可以获得单层MoS2FET中的理想LFN特性。通过使用CuS和Au电极探测非理想接触电阻效应,揭示了在高漏极电流(ID)区域中的过量接触噪声可以通过与CuS电极形成范德华结而显著降低。此外,热退火有效地减轻了硫空位诱导的亚间隙态密度(DOS),减少低ID区域中的多余噪声。通过对金属-2D半导体触点和子间隙DOS的细致优化,实现了1/f噪声与纯载波数波动模型的对准,最终在单层MoS2FET中实现了理想的LFN行为。这项研究强调了精炼多余噪音的必要性,预示着2D电子设备性能和可靠性的提高。
    The pursuit of sub-1-nm field-effect transistor (FET) channels within 3D semiconducting crystals faces challenges due to diminished gate electrostatics and increased charge carrier scattering. 2D semiconductors, exemplified by transition metal dichalcogenides, provide a promising alternative. However, the non-idealities, such as excess low-frequency noise (LFN) in 2D FETs, present substantial hurdles to their realization and commercialization. In this study, ideal LFN characteristics in monolayer MoS2 FETs are attained by engineering the metal-2D semiconductor contact and the subgap density of states (DOS). By probing non-ideal contact resistance effects using CuS and Au electrodes, it is uncovered that excess contact noise in the high drain current (ID) region can be substantially reduced by forming a van der Waals junction with CuS electrodes. Furthermore, thermal annealing effectively mitigates sulfur vacancy-induced subgap density of states (DOS), diminishing excess noise in the low ID region. Through meticulous optimization of metal-2D semiconductor contacts and subgap DOS, alignment of 1/f noise with the pure carrier number fluctuation model is achieved, ultimately achieving the sought-after ideal LFN behavior in monolayer MoS2 FETs. This study underscores the necessity of refining excess noise, heralding improved performance and reliability of 2D electronic devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    单片3D集成技术的潜力在很大程度上取决于互连特性的增强,这可以导致更薄的堆叠,更好的散热,减少信号延迟。石墨烯等碳材料,以Sp2杂化碳为特征,由于其出色的电气特性,是未来互连的有希望的候选人,热导率和抗电迁移。然而,一个重要的挑战在于在极薄的半导体沟道和石墨材料之间实现低接触电阻。为了解决这个问题,我们提出了一种创新的晶圆级合成方法,该方法可以在干转移的2D半导体和生长的纳米晶石墨互连之间实现低接触电阻。与等效厚度的金属膜相比,具有金属掺杂的混合石墨互连将薄层电阻降低了84%。此外,掩埋石墨接触的引入导致接触电阻比块状金属接触(>40nm)低17倍。使用具有此最佳结构的晶体管成功地演示了简单的逻辑功能。活性层的厚度保持在7nm以下,包括渠道和联系人。在这项工作中开发的超薄晶体管和互连堆栈,其特点是易于蚀刻的中间层和低寄生电阻,导致未来3DIC的异构集成。本文受版权保护。保留所有权利。
    The potential of monolithic 3D integration technology is largely dependent on the enhancement of interconnect characteristics which can lead to thinner stacks, better heat dissipation, and reduced signal delays. Carbon materials such as graphene, characterized by sp2 hybridized carbons, are promising candidates for future interconnects due to their exceptional electrical, thermal conductivity and resistance to electromigration. However, a significant challenge lies in achieving low contact resistance between extremely thin semiconductor channels and graphitic materials. To address this issue, an innovative wafer-scale synthesis approach is proposed that enables low contact resistance between dry-transferred 2D semiconductors and the as-grown nanocrystalline graphitic interconnects. A hybrid graphitic interconnect with metal doping reduces the sheet resistance by 84% compared to an equivalent thickness metal film. Furthermore, the introduction of a buried graphitic contact results in a contact resistance that is 17 times lower than that of bulk metal contacts (>40 nm). Transistors with this optimal structure are used to successfully demonstrate a simple logic function. The thickness of active layer is maintained within sub-7 nm range, encompassing both channels and contacts. The ultrathin transistor and interconnect stack developed here, characterized by a readily etchable interlayer and low parasitic resistance, leads to heterogeneous integration of future 3D integrated circuits (ICs).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二维(2D)过渡金属二硫属化合物(TMD)由于其在下一代电子产品中的潜力而引起了广泛关注。这需要设备缩放。然而,基于TMD的场效应晶体管(FET)的性能受到接触电阻的极大限制。本研究开发了一种有效的策略,通过结合接触掺杂和2D金属电极材料来优化WSe2FET的接触电阻。使用激光掺杂接触区,并且将金属TaSe2薄片堆叠在掺杂的WSe2上作为电极。掺杂接触区域会减小耗尽宽度,而引入TaSe2接触导致较低的肖特基势垒。该方法显著改善了WSe2FET的电性能。掺杂的WSe2/TaSe2接触具有65meV的超低肖特基势垒高度和11kΩ·μm的接触电阻,与传统的Cr/Au接触相比减少了50倍。我们的方法提供了一种制造高性能2DFET的方法。
    Two-dimensional (2D) transitional metal dichalcogenides (TMDs) have garnered significant attention due to their potential for next-generation electronics, which require device scaling. However, the performance of TMD-based field-effect transistors (FETs) is greatly limited by the contact resistance. This study develops an effective strategy to optimize the contact resistance of WSe2 FETs by combining contact doping and 2D metallic electrode materials. The contact regions were doped using a laser, and the metallic TaSe2 flakes were stacked on doped WSe2 as electrodes. Doping the contact areas decreases the depletion width, while introducing the TaSe2 contact results in a lower Schottky barrier. This method significantly improves the electrical performance of the WSe2 FETs. The doped WSe2/TaSe2 contact exhibits an ultralow Schottky barrier height of 65 meV and a contact resistance of 11 kΩ·μm, which is a 50-fold reduction compared to the conventional Cr/Au contact. Our method offers a way on fabricating high-performance 2D FETs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微热电装置(m-TED)具有可调节体积,简单的结构,精确,快速温度控制,将其定位为当前唯一的管理微电子系统温度的解决方案。它广泛应用于5G光模块,激光激光雷达,和红外探测。然而,随着m-TED尺寸的减小,接口比例的增长损害了设备的运行可靠性,限制了m-TED的发展。在这项研究中,我们使用市售的碲化铋材料来构建m-TED。在各种温度下测试器件的可靠性:-40、85、125和150°C。通过解构和分析测试过程中失败的设备,我们发现器件失效的主要原因是焊料层的退化。此外,我们证明了用聚二甲基硅氧烷(PDMS)封装器件可以有效地延迟其性能的恶化。这项研究激发了对m-TED服务可靠性的新见解,并为进一步优化设备接口设计和增强设备制造过程铺平了道路。
    The micro thermoelectric device (m-TED) boasts features such as adjustable volume, straightforward structure, and precise, rapid temperature control, positioning it as the only current solution for managing the temperature of microelectronic systems. It is extensively utilized in 5G optical modules, laser lidars, and infrared detection. Nevertheless, as the size of the m-TED diminishes, the growing proportion of interface damages the device\'s operational reliability, constraining the advancement of the m-TED. In this study, we used commercially available bismuth telluride materials to construct the m-TED. The device\'s reliability was tested under various temperatures: -40, 85, 125, and 150 °C. By deconstructing and analyzing the devices that failed during the tests, we discovered that the primary cause of device failure was the degradation of the solder layer. Moreover, we demonstrated that encapsulating the device with polydimethylsiloxane (PDMS) could effectively delay the deterioration of its performance. This study sparks new insights into the service reliability of m-TEDs and paves the way for further optimizing device interface design and enhancing the device manufacturing process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号