Synthetic biology

合成生物学
  • 文章类型: Journal Article
    核酸化学是一个巨大的研究领域,由于最近寡核苷酸治疗的爆炸性成功而获得了新的动力。为了使寡核苷酸变得临床有效,其单体部分进行修饰。尽管近年来已经提出了大量重新设计的天然核酸,其中绝大多数是过去50年提出的简单修改的组合。这篇综述致力于迄今为止已知的天然核酸的糖磷酸主链的主要修饰。这里,我们提出了关于核酸单体修饰的现有知识的系统化,并从化学逻辑的角度提出了可接受的分类。视觉表示旨在激励研究人员创建新型修饰或已知修饰的原始组合,这些修饰将产生具有有价值特征的独特寡核苷酸。
    Nucleic acid chemistry is a huge research area that has received new impetus due to the recent explosive success of oligonucleotide therapy. In order for an oligonucleotide to become clinically effective, its monomeric parts are subjected to modifications. Although a large number of redesigned natural nucleic acids have been proposed in recent years, the vast majority of them are combinations of simple modifications proposed over the past 50 years. This review is devoted to the main modifications of the sugar phosphate backbone of natural nucleic acids known to date. Here, we propose a systematization of existing knowledge about modifications of nucleic acid monomers and an acceptable classification from the point of view of chemical logic. The visual representation is intended to inspire researchers to create a new type of modification or an original combination of known modifications that will produce unique oligonucleotides with valuable characteristics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA改组是通过同源亲本序列的重组产生合成DNA的强大技术。通常将所得的嵌合体掺入复杂文库中用于功能性筛选,以鉴定具有改进特征的新变体。为了调查洗牌效率,嵌合体的子序列可以计算地分配给它们对应的父母对应物,深入了解重组事件的频率,改组文库的多样性和最终变体的实际组成。尽管存在父母分配的工具,它们不提供结果的直接可视化,使分析耗时且繁琐。这里我们介绍ShuffleAnalyzer,一个全面的,用户友好,基于Python的分析工具,可直接生成父母分配的图形输出,并在BSD-3许可证下免费提供(https://github.com/joerg-swg/ShuffleAnalyzer/releases)。除了DNA改组,肽插入可以同时分析和可视化,这使得ShuffleAnalyzer成为合成生物学中经常使用的集成方法的非常有价值的工具,例如在基因治疗应用中的AAV衣壳工程。
    DNA shuffling is a powerful technique for generating synthetic DNA via recombination of homologous parental sequences. Resulting chimeras are often incorporated into complex libraries for functionality screenings that identify novel variants with improved characteristics. To survey shuffling efficiency, subsequences of chimeras can be computationally assigned to their corresponding parental counterpart, yielding insight into frequency of recombination events, diversity of shuffling libraries and actual composition of final variants. Whereas tools for parental assignment exist, they do not provide direct visualization of the results, making the analysis time-consuming and cumbersome. Here we present ShuffleAnalyzer, a comprehensive, user-friendly, Python-based analysis tool that directly generates graphical outputs of parental assignments and is freely available under a BSD-3 license (https://github.com/joerg-swg/ShuffleAnalyzer/releases). Besides DNA shuffling, peptide insertions can be simultaneously analyzed and visualized, which makes ShuffleAnalyzer a highly valuable tool for integrated approaches often used in synthetic biology, such as AAV capsid engineering in gene therapy applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: News
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    藻类生物技术通过各种生物产品的可持续和可扩展生产来彻底改变生物经济。然而,缺乏先进的遗传工具阻碍了它们的发展。这项研究引入了一种合成生物学方法来开发这种工具,专注于合成启动子的构建和测试。通过分析6种不同藻类高度表达基因的启动子区域内的保守DNA基序,我们确定了与高转录活性相关的顺式调节元件(CREs)。结合算法POWRS,STREME,和PhyloGibbs,我们预测了1511个CRE,并将它们插入到1、2或3个拷贝的最小合成启动子序列中,产生4533个不同的合成启动子。通过抗生素选择和荧光激活细胞分选后的下一代测序,在体内评估这些启动子以高通量方式驱动转基因表达的能力。为了验证我们的方法,我们测序了数百个转基因品系,显示出高水平的GFP表达。Further,我们分别测试了14个鉴定的启动子,显示GFP表达的大幅增加-比基线合成启动子高9倍,具有五个匹配甚至超越天然AR1启动子的性能。作为这项研究的结果,我们确定了可用于构建高级合成藻类启动子的CRE目录。更重要的是,在这里,我们提供了一个经过验证的管道,以生成适用于具有测序基因组和转录组数据集的任何藻类物种的创新合成遗传工具的构建模块。
    Algae biotechnology holds immense promise for revolutionizing the bioeconomy through the sustainable and scalable production of various bioproducts. However, their development has been hindered by the lack of advanced genetic tools. This study introduces a synthetic biology approach to develop such tools, focusing on the construction and testing of synthetic promoters. By analyzing conserved DNA motifs within the promoter regions of highly expressed genes across six different algal species, we identified cis-regulatory elements (CREs) associated with high transcriptional activity. Combining the algorithms POWRS, STREME, and PhyloGibbs, we predicted 1511 CREs and inserted them into a minimal synthetic promoter sequence in 1, 2, or 3 copies, resulting in 4533 distinct synthetic promoters. These promoters were evaluated in vivo for their capacity to drive the expression of a transgene in a high-throughput manner through next-generation sequencing post antibiotic selection and fluorescence-activated cell sorting. To validate our approach, we sequenced hundreds of transgenic lines showing high levels of GFP expression. Further, we individually tested 14 identified promoters, revealing substantial increases in GFP expression─up to nine times higher than the baseline synthetic promoter, with five matching or even surpassing the performance of the native AR1 promoter. As a result of this study, we identified a catalog of CREs that can now be used to build superior synthetic algal promoters. More importantly, here we present a validated pipeline to generate building blocks for innovative synthetic genetic tools applicable to any algal species with a sequenced genome and transcriptome data set.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过水分解制氢是可再生和可持续清洁能源的重要战略。在这项研究中,我们开发了一种集成纳米材料工程和合成生物学的方法,以建立一个生物阳极反应器系统,用于高效的制氢。电活性细菌的周质空间(20至30nm),ShewanellaoneidensisMR-1被设计用作生物阳极反应器,以增强电子和质子之间的相互作用,用氢化酶催化制氢。为了优化电子转移,我们使用微生物还原的氧化石墨烯(rGO)来涂覆电极,这改善了电子从电极到细胞的转移。在S.oneidensis上的天然MtrCAB蛋白复合物和自组装的硫化铁(FeS)纳米颗粒串联起作用,以促进电子从电极转移到周质。为了增强质子传输,S.onidensisMR-1被设计为表达视紫红质(GR)和光捕获天线角黄素。当暴露于光线时,这导致了有效的质子泵,导致制氢速率增加35.6%。天然[FeFe]氢化酶的过表达进一步提高了56.8%的产氢率。在S.oneidensisMR-1中设计的生物阳极反应器在-0.75V的电势下实现了80.4μmol/mg蛋白质/天的氢产量,法拉第效率为80%。这种周质生物阳极反应器结合了纳米材料和生物成分的优势,为微生物电合成提供了一种有效的方法。
    Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 μmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转移RNA作为将遗传密码翻译成蛋白质的分子已被广泛探索。在遗传学和生物化学的交界处,tRNA通过与许多结合配偶体相互作用来指导翻译的每个主要步骤的效率。然而,由于tRNA序列的可变性和丰富的不同转录后修饰,将tRNA序列与特定翻译结果联系起来的指南尚未阐明。这里,我们回顾了大量的努力,这些努力共同揭示了tRNA工程原理,这些原理可以用作调整翻译保真度的指南。这些原则使基础研究得以发展,用非规范氨基酸扩展遗传密码,和tRNA疗法。
    Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    无细胞基因表达系统用于许多应用中,包括药物制造,诊断,和教育工具包。这些系统中的非荧光蛋白的准确定量仍然是一个挑战。为了应对这一挑战,我们报道了优化的四半胱氨酸小螺旋作为融合蛋白和FlasH染料的独立报道分子的适应和使用.荧光报告螺旋短到足以在引物对上编码以通过PCR标记任何感兴趣的蛋白质。标记的蛋白质和独立的报道分子都可以用标准的96/384孔板读数器实时或在无细胞表达反应结束时定量检测,RT-qPCR系统,或凝胶电泳无需染色。荧光信号稳定,与蛋白质浓度呈线性关系,实现产品量化。我们修改了报告基因以研究无细胞表达动力学和工程核糖体活性。我们预计荧光小螺旋报告基因将有助于体外转录和翻译系统的工程改造。
    Cell-free gene expression systems are used in numerous applications, including medicine making, diagnostics, and educational kits. Accurate quantification of nonfluorescent proteins in these systems remains a challenge. To address this challenge, we report the adaptation and use of an optimized tetra-cysteine minihelix both as a fusion protein and as a standalone reporter with the FlAsH dye. The fluorescent reporter helix is short enough to be encoded on a primer pair to tag any protein of interest via PCR. Both the tagged protein and the standalone reporter can be detected quantitatively in real time or at the end of cell-free expression reactions with standard 96/384-well plate readers, an RT-qPCR system, or gel electrophoresis without the need for staining. The fluorescent signal is stable and correlates linearly with the protein concentration, enabling product quantification. We modified the reporter to study cell-free expression dynamics and engineered ribosome activity. We anticipate that the fluorescent minihelix reporter will facilitate efforts in engineering in vitro transcription and translation systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管假单胞菌属的成员具有特定的形态,新陈代谢,和基因组特征,家庭成员采用的利基和生活方式的多样性是巨大的。该组的一个物种,恶臭假单胞菌,作为植物根部的定殖者而茁壮成长,并经常栖息在被各种类型的化学废物污染的土壤中。由于历史偶然性和内在素质的结合,一种特殊的菌株,P.putidaKT2440,作为一种适合重组DNA技术的环境微生物的原型出现,它也能够分解化学污染物。稍后,同样的细菌发展成为在各种生物技术应用中编程特性和活动的可靠平台。本文总结了P.putidaKT2440的逐步升级,从作为芳香族化合物生物降解的基础研究系统(尤其是当携带TOL质粒pWW0时)到将其用作代谢工程和合成生物学的选择基础。尽管KT2440的分类学分类仍存在不确定性,但先进的基因组编辑功能使我们能够调整其遗传组成以满足特定需求。这使得它的传统分类不太重要,同时也增加了菌株对当代工业和环境用途的整体价值。
    Although members of the genus Pseudomonas share specific morphological, metabolic, and genomic traits, the diversity of niches and lifestyles adopted by the family members is vast. One species of the group, Pseudomonas putida, thrives as a colonizer of plant roots and frequently inhabits soils polluted with various types of chemical waste. Owing to a combination of historical contingencies and inherent qualities, a particular strain, P. putida KT2440, emerged time ago as an archetype of an environmental microorganism amenable to recombinant DNA technologies, which was also capable of catabolizing chemical pollutants. Later, the same bacterium progressed as a reliable platform for programming traits and activities in various biotechnological applications. This article summarizes the stepwise upgrading of P. putida KT2440 from being a system for fundamental studies on the biodegradation of aromatic compounds (especially when harboring the TOL plasmid pWW0) to its adoption as a chassis of choice in metabolic engineering and synthetic biology. Although there are remaining uncertainties about the taxonomic classification of KT2440, advanced genome editing capabilities allow us to tailor its genetic makeup to meet specific needs. This makes its traditional categorization somewhat less important, while also increasing the strain\'s overall value for contemporary industrial and environmental uses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    数据科学在工程生物学的设计和分析中发挥着越来越重要的作用。这是由高通量方法的发展推动的,如大规模平行报告检测,数据丰富的显微镜技术,计算蛋白质结构预测和设计,以及能够生成大量数据的全细胞模型的开发。尽管在这些情况下应用以数据为中心的分析的能力很有吸引力,而且越来越简单,它伴随着潜在的风险。例如,基础数据中的偏差如何影响结果的有效性,以及大规模数据分析的环境影响是什么?我们提出了一个社区开发的评估数据危害的框架,以帮助解决这些问题,并证明其在两个合成生物学案例研究中的应用。我们展示了常见类型的生物工程项目中考虑因素的多样性,并提供了一些指南和缓解步骤。了解使用数据时的潜在问题和危险,并主动解决这些问题,对于确保适当使用新兴的数据密集型人工智能方法至关重要,并有助于提高其在合成生物学中应用的可信度。
    Data science is playing an increasingly important role in the design and analysis of engineered biology. This has been fueled by the development of high-throughput methods like massively parallel reporter assays, data-rich microscopy techniques, computational protein structure prediction and design, and the development of whole-cell models able to generate huge volumes of data. Although the ability to apply data-centric analyses in these contexts is appealing and increasingly simple to do, it comes with potential risks. For example, how might biases in the underlying data affect the validity of a result and what might the environmental impact of large-scale data analyses be? Here, we present a community-developed framework for assessing data hazards to help address these concerns and demonstrate its application to two synthetic biology case studies. We show the diversity of considerations that arise in common types of bioengineering projects and provide some guidelines and mitigating steps. Understanding potential issues and dangers when working with data and proactively addressing them will be essential for ensuring the appropriate use of emerging data-intensive AI methods and help increase the trustworthiness of their applications in synthetic biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号