Soft bioelectronics

  • 文章类型: Journal Article
    导电水凝胶的低导电性限制了它们在生物电子学中作为软导体的应用。这种低电导率源于水凝胶的高含水量,这阻碍了导电填料之间容易的载流子传输。这项研究提出了一种高度导电和可拉伸的水凝胶纳米复合材料,包括晶须金纳米片。制备晶须的金纳米片的干燥网络,然后将其结合到湿水凝胶基质中。尽管水含量很高,但晶须的金纳米片在水凝胶中保持了紧密的互连,即使在拉伸状态下也能提供高质量的渗滤网络。不管水凝胶基质的类型如何,金-水凝胶纳米复合材料的电导率约为520Scm-1,可拉伸性约为300%,而无需脱水过程。当控制干金网络的密度时,电导率达到最大值≈3304Scm-1。一种金粘合剂水凝胶纳米复合材料,可以实现与运动器官表面的共形粘附,是为生物电子学演示而制作的。粘合剂水凝胶电极在体内心外膜电描记图记录中优于基于弹性体的电极,心外膜起搏,坐骨神经刺激.
    The low electrical conductivity of conductive hydrogels limits their applications as soft conductors in bioelectronics. This low conductivity originates from the high water content of hydrogels, which impedes facile carrier transport between conductive fillers. This study presents a highly conductive and stretchable hydrogel nanocomposite comprising whiskered gold nanosheets. A dry network of whiskered gold nanosheets is fabricated and then incorporated into the wet hydrogel matrices. The whiskered gold nanosheets preserve their tight interconnection in hydrogels despite the high water content, providing a high-quality percolation network even under stretched states. Regardless of the type of hydrogel matrix, the gold-hydrogel nanocomposites exhibit a conductivity of ≈520 S cm-1 and a stretchability of ≈300% without requiring a dehydration process. The conductivity reaches a maximum of ≈3304 S cm-1 when the density of the dry gold network is controlled. A gold-adhesive hydrogel nanocomposite, which can achieve conformal adhesion to moving organ surfaces, is fabricated for bioelectronics demonstrations. The adhesive hydrogel electrode outperforms elastomer-based electrodes in in vivo epicardial electrogram recording, epicardial pacing, and sciatic nerve stimulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在现代纳米科学和纳米技术中,金纳米材料是不可或缺的组成部分,已经证明了在催化中的大量应用,生物学生物电子学,和光电子。金纳米材料具有许多吸引人的材料特性,例如对其尺寸/形状和表面功能的轻松控制,固有的化学惰性,但具有高度的生物相容性,可调节的局部表面等离子体共振,可调电导率,宽电化学窗口,等。这种材料属性最近已被用于设计和制造软生物电子学和光电子学。这激发了对这个新兴领域的全面概述。具有代表性的定制金纳米材料的讨论,包括金纳米晶体,超薄金纳米线,垂直排列的金纳米线,硬模板辅助金纳米线/金纳米管,双金属/三金属金纳米线,金纳米网格,和金纳米片,开始了。接下来是对各种制造方法的描述,用于最先进的应用,例如应变传感器,压力传感器,电化学传感器,电生理装置,储能设备,能量收集装置,光电子学,和其他人。最后,讨论了剩余的挑战和机遇。
    In modern nanoscience and nanotechnology, gold nanomaterials are indispensable building blocks that have demonstrated a plethora of applications in catalysis, biology, bioelectronics, and optoelectronics. Gold nanomaterials possess many appealing material properties, such as facile control over their size/shape and surface functionality, intrinsic chemical inertness yet with high biocompatibility, adjustable localized surface plasmon resonances, tunable conductivity, wide electrochemical window, etc. Such material attributes have been recently utilized for designing and fabricating soft bioelectronics and optoelectronics. This motivates to give a comprehensive overview of this burgeoning field. The discussion of representative tailor-made gold nanomaterials, including gold nanocrystals, ultrathin gold nanowires, vertically aligned gold nanowires, hard template-assisted gold nanowires/gold nanotubes, bimetallic/trimetallic gold nanowires, gold nanomeshes, and gold nanosheets, is begun. This is followed by the description of various fabrication methodologies for state-of-the-art applications such as strain sensors, pressure sensors, electrochemical sensors, electrophysiological devices, energy-storage devices, energy-harvesting devices, optoelectronics, and others. Finally, the remaining challenges and opportunities are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    软生物电子学的材料进步,特别是那些基于可拉伸纳米复合材料的材料,即嵌入具有不可逆或可逆键的粘弹性聚合物中的功能性纳米材料,推动了转化医疗器械研究的重大进展。可拉伸纳米复合材料固有的独特机械性能使组织和设备之间的刚度匹配,以及它对体内环境的自发机械适应,最小化不期望的机械应力和炎症反应。此外,这些性质允许纳米复合材料中的导电填料的渗透网络即使在重复的拉伸/压缩应力下也是持续的。导致稳定的组织装置接口。这里,我们对材料策略进行了深入的回顾,制造/集成技术,设备设计,应用程序,以及基于纳米复合材料的软生物电子学的转化机会,具有内在的可拉伸性,自我愈合,组织粘连,和/或注射器可注射性。在许多人中,应用于大脑,心,主要讨论周围神经,在某些领域,如神经肌肉和心血管工程的转化研究尤其突出。
    Material advances in soft bioelectronics, particularly those based on stretchable nanocomposites─functional nanomaterials embedded in viscoelastic polymers with irreversible or reversible bonds─have driven significant progress in translational medical device research. The unique mechanical properties inherent in the stretchable nanocomposites enable stiffness matching between tissue and device, as well as its spontaneous mechanical adaptation to in vivo environments, minimizing undesired mechanical stress and inflammation responses. Furthermore, these properties allow percolative networks of conducting fillers in the nanocomposites to be sustained even under repetitive tensile/compressive stresses, leading to stable tissue-device interfacing. Here, we present an in-depth review of materials strategies, fabrication/integration techniques, device designs, applications, and translational opportunities of nanocomposite-based soft bioelectronics, which feature intrinsic stretchability, self-healability, tissue adhesion, and/or syringe injectability. Among many, applications to brain, heart, and peripheral nerves are predominantly discussed, and translational studies in certain domains such as neuromuscular and cardiovascular engineering are particularly highlighted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    中枢神经系统中的物理和化学信号产生在生理和病理条件下临床相关的关键信息。生物电子学的新兴领域专注于具有高时空分辨率和最小侵入性的神经生理信号的监测和操纵。通过材料和结构设计的创新,取得了重大进展,显著增强了机械和电气性能,生物相容性,和整体设备性能。软生物电子学的诊断和治疗潜力已经在各种临床前环境中得到证实。这篇综述总结了最近的研究,强调了软生物电子学在神经系统疾病中的发展和应用。包括神经监测,神经调节,肿瘤治疗,和生物传感。还从电源方面讨论了软设备的局限性和前景,无线控制,生物相容性,和人工智能的整合。这篇综述强调了软生物电子学作为促进破译神经系统疾病的脑功能和临床结果的未来平台的潜力。
    Physical and chemical signals in the central nervous system yield crucial information that is clinically relevant under both physiological and pathological conditions. The emerging field of bioelectronics focuses on the monitoring and manipulation of neurophysiological signals with high spatiotemporal resolution and minimal invasiveness. Significant advances have been realized through innovations in materials and structural design, which have markedly enhanced mechanical and electrical properties, biocompatibility, and overall device performance. The diagnostic and therapeutic potential of soft bioelectronics has been corroborated across a diverse array of pre-clinical settings. This review summarizes recent studies that underscore the developments and applications of soft bioelectronics in neurological disorders, including neuromonitoring, neuromodulation, tumor treatment, and biosensing. Limitations and outlooks of soft devices are also discussed in terms of power supply, wireless control, biocompatibility, and the integration of artificial intelligence. This review highlights the potential of soft bioelectronics as a future platform to promote deciphering brain functions and clinical outcomes of neurological diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    心脏接口设备是心血管疾病管理的重要组成部分,特别是在电生理监测和实施治疗方面。然而,传统的心脏装置通常由刚性和笨重的材料组成,因此对于与动态跳动的心脏的曲线表面的有效长期接口构成重大挑战。在这方面,使用纳米复合材料的内在软生物电子器件的最新发展,它们是通过在聚合物和弹性体基质中混合导电纳米填料制成的,显示出巨大的希望。本质上的软生物电子学不仅能承受心脏的动态跳动运动并保持稳定的性能,可靠,与目标心脏组织的大面积接口,允许高质量的电生理标测,反馈电刺激,甚至机械援助。这里,我们探索了基于利用弹性导电纳米复合材料的软生物电子设备的下一代心脏接口策略.我们首先讨论用于管理心血管疾病的常规心脏设备,并解释其不良局限性。然后,我们介绍了固有的软聚合物材料和机械约束装置利用软聚合物材料。在讨论了导电纳米材料的制备和功能化之后,引入使用纳米复合材料的内在软生物电子学及其在心脏监测和反馈治疗中的应用。最后,讨论了软生物电子学在心脏接口技术中的未来前景。
    Cardiac interfacing devices are essential components for the management of cardiovascular diseases, particularly in terms of electrophysiological monitoring and implementation of therapies. However, conventional cardiac devices are typically composed of rigid and bulky materials and thus pose significant challenges for effective long-term interfacing with the curvilinear surface of a dynamically beating heart. In this regard, the recent development of intrinsically soft bioelectronic devices using nanocomposites, which are fabricated by blending conductive nanofillers in polymeric and elastomeric matrices, has shown great promise. The intrinsically soft bioelectronics not only endure the dynamic beating motion of the heart and maintain stable performance but also enable conformal, reliable, and large-area interfacing with the target cardiac tissue, allowing for high-quality electrophysiological mapping, feedback electrical stimulations, and even mechanical assistance. Here, we explore next-generation cardiac interfacing strategies based on soft bioelectronic devices that utilize elastic conductive nanocomposites. We first discuss the conventional cardiac devices used to manage cardiovascular diseases and explain their undesired limitations. Then, we introduce intrinsically soft polymeric materials and mechanical restraint devices utilizing soft polymeric materials. After the discussion of the fabrication and functionalization of conductive nanomaterials, the introduction of intrinsically soft bioelectronics using nanocomposites and their application to cardiac monitoring and feedback therapy follow. Finally, comments on the future prospects of soft bioelectronics for cardiac interfacing technologies are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:袖带电极靶向全身的各种神经,为运动提供神经调节疗法,感官,或者自主神经紊乱.然而,使用标准时,厚硅胶袖口,以离散的圆形尺寸制造,可能会出现并发症,即袖口移位或神经压迫,由于对体内遇到的可变神经形状和大小的适应性差。袖口设计的改进,材料,关闭机制和手术方法是必要的,以克服这些问题。
    方法:在这项工作中,我们提出了一种微制造的多通道基于硅胶的软袖带电极,具有新颖的易于植入和尺寸适应性设计,并评估了许多基本特征,如神经袖带接触,神经压迫,袖带锁定稳定性,长期整合和刺激选择性。我们还将性能与标准固定尺寸袖口进行了比较。
    结果:由150μm厚的硅胶膜制成的带状袖口提供了稳定且无压力的保形接触,与神经大小变异性无关,结合一个简单的植入程序。柔性材料的适应性设计和使用导致6周植入后有限的疤痕和脱髓鞘。此外,多触点设计,范围从6到16个电极,允许在大鼠和猪坐骨神经模型中进行选择性刺激,实现多达5个后肢肌肉的有针对性的激活。
    结论:这些结果表明了经典固定直径袖口的有希望的替代品,并且可能有助于采用柔软,临床环境中的适应性袖口。
    BACKGROUND: Cuff electrodes target various nerves throughout the body, providing neuromodulation therapies for motor, sensory, or autonomic disorders. However, when using standard, thick silicone cuffs, fabricated in discrete circular sizes, complications may arise, namely cuff displacement or nerve compression, due to a poor adaptability to variable nerve shapes and sizes encountered in vivo. Improvements in cuff design, materials, closing mechanism and surgical approach are necessary to overcome these issues.
    METHODS: In this work, we propose a microfabricated multi-channel silicone-based soft cuff electrode with a novel easy-to-implant and size-adaptable design and evaluate a number of essential features such as nerve-cuff contact, nerve compression, cuff locking stability, long-term integration and stimulation selectivity. We also compared performance to that of standard fixed-size cuffs.
    RESULTS: The belt-like cuff made of 150 μm thick silicone membranes provides a stable and pressure-free conformal contact, independently of nerve size variability, combined with a straightforward implantation procedure. The adaptable design and use of soft materials lead to limited scarring and demyelination after 6-week implantation. In addition, multi-contact designs, ranging from 6 to 16 electrodes, allow for selective stimulation in models of rat and pig sciatic nerve, achieving targeted activation of up to 5 hindlimb muscles.
    CONCLUSIONS: These results suggest a promising alternative to classic fixed-diameter cuffs and may facilitate the adoption of soft, adaptable cuffs in clinical settings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经工程的软生物电子技术已经取得了显著的进展,其中包括新颖的软材料技术和设备设计策略。从基础脑科学开始的这种技术进步最近已应用于临床神经科学,并为各种脑疾病的诊断效率和治疗效果的显着改善提供了有意义的承诺。考虑到特定疾病情况的系统级整合策略可以进一步提高治疗效果。这里,我们回顾了用于神经工程的软可植入生物电子学的最新进展,专注于为治疗颅内疾病环境而优化的材料和设备设计。我们首先分类并举例说明用于神经工程的各种类型的软生物电子学,然后解释传感和刺激设备组件的细节。接下来,我们回顾了软植入式生物电子学在临床神经科学中的应用实例,特别关注脑肿瘤和癫痫的治疗。最后,我们提出了一个理想的软颅内生物电子学系统,如闭环型全集成系统,并讨论其临床翻译的剩余挑战。本文受版权保护。保留所有权利。
    Soft bioelectronic technologies for neuroengineering have shown remarkable progress, which include novel soft material technologies and device design strategies. Such technological advances that are initiated from fundamental brain science are applied to clinical neuroscience and provided meaningful promises for significant improvement in the diagnosis efficiency and therapeutic efficacy of various brain diseases recently. System-level integration strategies in consideration of specific disease circumstances can enhance treatment effects further. Here, recent advances in soft implantable bioelectronics for neuroengineering, focusing on materials and device designs optimized for the treatment of intracranial disease environments, are reviewed. Various types of soft bioelectronics for neuroengineering are categorized and exemplified first, and then details for the sensing and stimulating device components are explained. Next, application examples of soft implantable bioelectronics to clinical neuroscience, particularly focusing on the treatment of brain tumor and epilepsy are reviewed. Finally, an ideal system of soft intracranial bioelectronics such as closed-loop-type fully-integrated systems is presented, and the remaining challenges for their clinical translation are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    睡眠对于保持身心健康至关重要。在没有不舒适的用户体验的情况下测量生理参数以量化睡眠质量仍然是高度期望的,但是是挑战。这里,我们开发了一种软生物电子贴片,以可穿戴和非侵入性的方式在睡眠期间同时进行呼吸和心血管监测。软贴片系统主要由压力传感器、用于信号处理的柔性印刷电路,和用于组装不同功能模块的软热塑性聚氨酯模具。软生物电子贴片具有>0.12V/kPa的灵敏度和0.5Hz至15Hz的显着低频响应。它被证明可以在整个晚上连续监测呼吸和心率,可用于睡眠监测和阻塞性睡眠呼吸暂停低通气综合征的诊断。报道的软生物电子贴片代表了一种用于睡眠研究和睡眠质量改善的简单方便的平台技术。本文受版权保护。保留所有权利。
    Sleep is critical to maintaining physical and mental health. Measuring physiological parameters to quantify sleep quality without uncomfortable user experience remains highly desired but a challenge. Here, this work develops a soft bioelectronic patch to perform simultaneous respiration and cardiovascular monitoring during sleep in a wearable and non-invasive manner. The soft bioelectronic patch system is mainly composed of a pressure sensor, a flexible printed circuit for signal processing, and a soft thermoplastic urethane mold for assembling different functional modules. The soft bioelectronic patch holds a sensitivity of >0.12 V kPa-1 and a remarkable low-frequency response from 0.5 to 15 Hz. It is demonstrated to continuously monitor respiration and heartbeat during the whole night, which could be harnessed for sleep monitoring and obstructive sleep apnea-hypopnea syndrome diagnosis. The reported soft bioelectronic patch represents a simple and convenient platform technology for sleep study.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    软生物电子学由于其柔软性在高精度治疗中起着越来越重要的作用,生物相容性,临床准确性,长期稳定,和耐心友好。在这次审查中,我们全面概述了先进的软生物电子学的最新代表性治疗应用,从皮肤伤口的可穿戴疗法,糖尿病,眼科疾病,肌肉疾病,和其他疾病对复杂疾病的可植入疗法,比如心律失常,癌症,神经系统疾病,和其他人。我们还强调了软治疗生物电子学未来临床转化和商业化向个性化医疗的关键挑战和机遇。
    Soft bioelectronics play an increasingly crucial role in high-precision therapeutics due to their softness, biocompatibility, clinical accuracy, long-term stability, and patient-friendliness. In this review, we provide a comprehensive overview of the latest representative therapeutic applications of advanced soft bioelectronics, ranging from wearable therapeutics for skin wounds, diabetes, ophthalmic diseases, muscle disorders, and other diseases to implantable therapeutics against complex diseases, such as cardiac arrhythmias, cancer, neurological diseases, and others. We also highlight key challenges and opportunities for future clinical translation and commercialization of soft therapeutic bioelectronics toward personalized medicine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有严重压力的健康问题的重大威胁危及处于极度炎热工作场所的户外工人。尽管最近的研究有望量化人体皮肤的压力水平,他们仍然依赖僵化,笨重的传感器模块,导致数据丢失的运动伪影和有限的现场部署连续健康监测。此外,以前的工作没有显示出一个可穿戴设备,可以忍受热暴露,同时显示在现实的工作环境下受试者的压力连续监测。这里,我们介绍一个柔软的,可现场部署,可穿戴生物电子系统,用于检测户外工作者的压力水平,具有可忽略的运动伪影和可控的热管理。我们将纳米纤维辐射冷却器(NFRC)和小型化传感器与纳米膜软电子平台集成在一起,以在炎热的户外条件下测量稳定的皮肤电活动和温度。NFRC在亚环境空气中具有出色的冷却性能,具有高的太阳反射率和高热发射率。具有所有嵌入式电子组件和NFRC的集成可穿戴设备在亚环境空气中显示出比无NFRC设备更低的温度(41.1%),同时捕获改进的操作时间(18.2%)。生物电子学与农业活动的体内人体研究证明了该设备的便携式能力,连续,可现场部署的户外工作人员的实时健康监测。本文受版权保护。保留所有权利。
    Severe stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies quantify stress levels on the human skin, they still rely on rigid, bulky sensor modules, causing data loss from motion artifacts and limited field-deployability for continuous health monitoring. Moreover, no prior work shows a wearable device that can endure heat exposure while showing continuous monitoring of a subject\'s stress under realistic working environments. Herein, a soft, field-deployable, wearable bioelectronic system is introduced for detecting outdoor workers\' stress levels with negligible motion artifacts and controllable thermal management. A nanofabric radiative cooler (NFRC) and miniaturized sensors with a nanomembrane soft electronic platform are integrated to measure stable electrodermal activities and temperature in hot outdoor conditions. The NFRC exhibits outstanding cooling performance in sub-ambient air with high solar reflectivity and high thermal emissivity. The integrated wearable device with all embedded electronic components and the NFRC shows a lower temperature (41.1%) in sub-ambient air than the NFRC-less device while capturing improved operation time (18.2%). In vivo human study of the bioelectronics with agricultural activities demonstrates the device\'s capability for portable, continuous, real-time health monitoring of outdoor workers with field deployability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号