Pleurotus sapidus

白灵菇
  • 文章类型: Journal Article
    真菌多糖通常作为天然和安全的免疫调节剂用于食品工业和生物医学领域。共培养是提高次生代谢产物产量的有价值的方法。本研究以胞内多糖(IPS)含量为筛选指标,将七种不同的真菌与香菇共培养。通过筛选选择种子预培养液培养时间,使用单因素实验评估条件,Plackett-Burman(PB)设计,和响应面方法(RSM)优化。进行了RSM优化,导致抗氧化能力的测量。结果表明,Vaninii和侧耳的共培养表现出最有效的结果。具体来说,将S.vaninii和P.sapidus种子培养物预培养2天和0天,分别,然后共同培养,与单菌株培养相比,IPS含量显着增加。共培养条件的进一步优化表明,酵母提取物浓度,液体体积,和S.vaninii接种比例显着影响IPS含量的顺序为酵母提取物浓度>液体体积>S.vaninii接种比例。在最优条件下,IPS含量达到69.9626mg/g,与优化前的共培养条件相比增加了17.04%。抗氧化能力测试表明,与单菌株培养物相比,共培养的IPS对DPPH和ABTS自由基具有更大的清除能力。这些发现突出了共同培养S.vaninii和P.sapidus以提高IPS含量和提高抗氧化能力的潜力,提出了增加真菌多糖产量的有效策略。
    Fungal polysaccharides are commonly utilized in the food industry and biomedical fields as a natural and safe immune modulator. Co-culturing is a valuable method for enhancing the production of secondary metabolites. This study used intracellular polysaccharide (IPS) content as a screening index, co-culturing seven different fungi with Sanghuangporus vaninii. The seed pre-culture liquid culture time was selected through screening, and conditions were assessed using single factor experimentation, a Plackett-Burman (PB) design, and response surface methodology (RSM) optimization. RSM optimization was conducted, leading to the measurement of antioxidant capacity. Results indicated that the co-culture of S. vaninii and Pleurotus sapidus exhibited the most effective outcome. Specifically, pre-culturing S. vaninii and P. sapidus seed cultures for 2 days and 0 days, respectively, followed by co-culturing, significantly increased IPS content compared to single-strain culturing. Further optimization of co-culture conditions revealed that yeast extract concentration, liquid volume, and S. vaninii inoculum ratio notably influenced IPS content in the order of yeast extract concentration > liquid volume > S. vaninii inoculum ratio. Under the optimal conditions, IPS content reached 69.9626 mg/g, a 17.04% increase from pre-optimization co-culture conditions. Antioxidant capacity testing demonstrated that co-cultured IPS exhibited greater scavenging abilities for DPPH and ABTS free radicals compared to single strain cultures. These findings highlight the potential of co-culturing S. vaninii and P. sapidus to enhance IPS content and improve antioxidant capacity, presenting an effective strategy for increasing fungal polysaccharide production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    天然低共熔溶剂(NADES)可以作为酶的溶剂,是可生物降解的,毒性低。测试了八种具有不同氢键受体和供体的NADES,以提高侧耳担子菌(LOXPSA)的脂加氧酶的稳定性和活性。甜菜碱:山梨糖醇:水(1:1:3,BSorbW)和甜菜碱:乙二醇(1:3,BEtGly)对亚油酸的过氧化作用以及胡椒碱与香草味化合物胡椒醛的副反应具有最佳影响。与对照相比,NADESs中胡椒醛的产率在BSorbW中增加了43%,在BEtGly中增加了40%。BSorbW的添加还增强了酶在各种温度下的稳定性,并在60°C孵育期间增加了其活性。脂加氧酶活性和稳定性的改善表明在工业中具有广泛的应用,扩大酶的潜在用途。
    Natural deep eutectic solvents (NADESs) can serve as solvents for enzymes, are biodegradable, and have low toxicities. Eight NADESs with different hydrogen bond acceptors and donors were tested to improve the stability and activity of a lipoxygenase from Basidiomycete Pleurotus sapidus (LOXPSA). Betaine:sorbitol:water (1:1:3, BSorbW) and betaine:ethylene glycol (1:3, BEtGly) had the best impact on the peroxidation of linoleic acid and the side reaction of piperine to the vanilla-like scented compound piperonal. The yield of piperonal in NADESs increased by 43% in BSorbW and 40% in BEtGly compared to the control. The addition of BSorbW also enhanced the enzyme\'s stability at various temperatures and increased its activity during incubation at 60 °C. The demonstrated improvement in lipoxygenase activity and stability indicates versatile applications in industry, expanding the potential uses of the enzyme.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过微生物生产天然香料对食品和香料工业非常感兴趣,和农业工业的副产物特别适合作为底物。在本研究中,柑橘侧流是使用真菌白灵菇的单核菌株发酵的。一些文化表现出令人愉快的气味,让人想起伍德拉夫和茴香,以及草本笔记。为了评估整体香气的组成,制备了选定单核体的浸没培养物的液/液提取物,并通过溶剂辅助的风味蒸发分离挥发物。香气提取物稀释分析显示对茴香醛(甜味,anisic和woodruff-like),风味稀释因子为218,作为特征影响化合物。像椰子一样,草本,被鉴定为(2S)-羟基-1-(4-甲氧基苯基)-1-丙酮的甜味酸碱也有助于整体香气,并被描述为一种香气活性物质,其在空气中的气味阈值为0.2ngL-1首次至2.4ngL-1。用同位素取代的1-酪氨酸补充培养基阐明了这种酚类氨基酸作为对茴香醛以及(2S)-羟基-1-(4-甲氧基苯基)-1-丙酮的前体。通过HPLC的手性分析显示,由P.sapidus产生的分离产物的对映体过量为97%。
    The production of natural flavors by means of microorganisms is of great interest for the food and flavor industry, and by-products of the agro-industry are particularly suitable as substrates. In the present study, Citrus side streams were fermented using monokaryotic strains of the fungus Pleurotus sapidus. Some of the cultures exhibited a pleasant smell, reminiscent of woodruff and anise, as well as herbaceous notes. To evaluate the composition of the overall aroma, liquid/liquid extracts of submerged cultures of a selected monokaryon were prepared, and the volatiles were isolated via solvent-assisted flavor evaporation. Aroma extract dilution analyses revealed p-anisaldehyde (sweetish, anisic- and woodruff-like) with a flavor dilution factor of 218 as a character impact compound. The coconut-like, herbaceous, and sweetish smelling acyloin identified as (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone also contributed to the overall aroma and was described as an aroma-active substance with an odor threshold in air of 0.2 ng L-1 to 2.4 ng L-1 for the first time. Supplementation of the culture medium with isotopically substituted l-tyrosine elucidated this phenolic amino acid as precursor of p-anisaldehyde as well as of (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone. Chiral analysis via HPLC revealed an enantiomeric excess of 97% for the isolated product produced by P. sapidus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The basidiomycete Pleurotus sapidus produced a dye-decolorizing peroxidase (PsaPOX) with alkene cleavage activity, implying potential as a biocatalyst for the fragrance and flavor industry. To increase the activity, a daughter-generation of 101 basidiospore-derived monokaryons (MK) was used. After a pre-selection according to the growth rate, the activity analysis revealed a stable intraspecific variability of the strains regarding peroxidase and alkene cleavage activity of PsaPOX. Ten monokaryons reached activities up to 2.6-fold higher than the dikaryon, with MK16 showing the highest activity. Analysis of the PsaPOX gene identified three different enzyme variants. These were co-responsible for the observed differences in activities between strains as verified by heterologous expression in Komagataella phaffii. The mutation S371H in enzyme variant PsaPOX_high caused an activity increase alongside a higher protein stability, while the eleven mutations in variant PsaPOX_low resulted in an activity decrease, which was partially based on a shift of the pH optimum from 3.5 to 3.0. Transcriptional analysis revealed the increased expression of PsaPOX in MK16 as reason for the higher PsaPOX activity in comparison to other strains producing the same PsaPOX variant. Thus, different expression profiles, as well as enzyme variants, were identified as crucial factors for the intraspecific variability of the PsaPOX activity in the monokaryons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Fungi are known to modify the properties of lignocellulosic materials during solid-state fermentation (SSF). In this study, agricultural side-streams (sunflower seed hulls, rice husks and rice straw) were used as substrates for SSF with dikaryotic and monokaryotic strains of Pleurotus sapidus. The phenolic profiles of the mentioned substrates were characterized by LC-DAD/ESI-MSn pre- and post- fermentation. Moreover, antioxidant, cytotoxic and antimicrobial activities were screened against oxidizable cellular substrates, tumour and primary cell lines, and different bacteria and fungi, respectively. The concentration of phenolic compounds in the crop side-streams was reduced after fermentation with both strains of the fungus. The fermented extracts also displayed lower antioxidant and cytotoxic activities and had no hepatotoxicity. The antimicrobial activity depended upon the crop side-stream and/or SSF conditions. These results indicate that P. sapidus represent a good candidate to modify the phenolic fraction presents in crop side-streams with a consequent decrease in its bioactivities. However, the SSF with P. sapidus strains play an interesting role in the detoxification of plant materials which can be used for different applications according to the \"reduce - reuse - recycle\" concept contributing with the sustainable land use and circular economy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Alkene cleavage is a possibility to generate aldehydes with olfactory properties for the fragrance and flavor industry. A dye-decolorizing peroxidase (DyP) of the basidiomycete Pleurotus sapidus (PsaPOX) cleaved the aryl alkene trans-anethole. The PsaPOX was semi-purified from the mycelium via FPLC, and the corresponding gene was identified. The amino acid sequence as well as the predicted tertiary structure showed typical characteristics of DyPs as well as a non-canonical Mn2+-oxidation site on its surface. The gene was expressed in Komagataella pfaffii GS115 yielding activities up to 142 U/L using 2,2\'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) as substrate. PsaPOX exhibited optima at pH 3.5 and 40 °C and showed highest peroxidase activity in the presence of 100 µM H2O2 and 25 mM Mn2+. PsaPOX lacked the typical activity of DyPs towards anthraquinone dyes, but oxidized Mn2+ to Mn3+. In addition, bleaching of β-carotene and annatto was observed. Biotransformation experiments verified the alkene cleavage activity towards the aryl alkenes (E)-methyl isoeugenol, α-methylstyrene, and trans-anethole, which was increased almost twofold in the presence of Mn2+. The resultant aldehydes are olfactants used in the fragrance and flavor industry. PsaPOX is the first described DyP with alkene cleavage activity towards aryl alkenes and showed potential as biocatalyst for flavor production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The white-rot fungus Pleurotus sapidus (PSA) biosynthesizes the bicyclic monoterpenoids 3,6-dimethyl-2,3,3a,4,5,7a-hexahydrobenzofuran (dill ether) (1) and 3,6-dimethyl-3a,4,5,7a-tetrahydro-1-benzofuran-2(3H)-one (wine lactone) (2). Submerged cultures grown in different media were analyzed by gas chromatography-mass spectrometry. The stereochemistry of the formed isomers was elucidated by comparing their retention indices to those of reference compounds by enantioselective multidimensional gas chromatography. The basidiomycete produced the rare (3R,3aR,7aS) and (3S,3aR,7aS) stereoisomers of dill ether and wine lactone. Kinetic analyses of the volatilome and bioprocess parameters revealed that the biosynthesis of the bicyclic monoterpenoids correlated with the availability of the primary carbon source glucose. Spiking the media with 13C-labeled glucose demonstrated that the compounds were produced de novo. Supplementation studies i.a. with isotopically labeled substrates further identified limonene and p-menth-1-en-9-ol as intermediate compounds in the fungal pathways. PSA was able to biotransform all enantiomeric forms of the latter compounds to the respective isomers of dill ether and wine lactone.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The coding sequence of a peroxidase from the secretome of Pleurotus sapidus was cloned from a cDNA library. Bioinformatic analyses revealed an open reading frame of 1551 bp corresponding to a primary translation product of 516 amino acids. The DyP-type peroxidase was heterologously produced in Trichoderma reesei with an activity of 55,000 U L-1. The enzyme was purified from the culture supernatant, biochemically characterized and the kinetic parameters were determined. The enzyme has an N-terminal signal peptide composed of 62 amino acids. Analysis by Blue Native PAGE and activity staining with ABTS, as well as gel filtration chromatography showed the native dimeric state of the enzyme (115 kDa). Analysis of the substrate range revealed that the recombinant enzyme catalyzes, in addition to the conversion of some classic peroxidase substrates such as 2,2\'-azino-bis(3-ethylthiazoline-6-sulfonate) and substituted phenols like 2,6-dimethoxyphenol, also the decolorization of the anthraquinonic dye Reactive Blue 5. The enzyme also catalyzes bleaching of natural colorants such as β-carotene and annatto. Surprisingly, β-carotene was transformed in the presence and absence of H2O2 by rPsaDyP, however enzyme activity was increased by the addition of H2O2. This indicates that the rPsaDyP has an oxidase function in addition to a peroxidase activity. As a consequence of the high affinity to the characteristic substrate Reactive Blue 5 the rPsaDyP belongs functionally to the dyp-type peroxidase family.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The basidiomycete Pleurotus sapidus (PSA) was grown in submerged cultures with molasses as substrate for the production of mycelium as a protein source for food applications. The volatilomes of the substrate, the submerged culture, and the mycelia were analyzed by gas chromatography-tandem mass spectrometry-olfactometry. For compound identification, aroma dilution analyses by means of headspace solid phase microextraction and stir bar sorptive extraction were performed via variation of the split vent flow rate. Among the most potent odorants formed by PSA were arylic compounds (e.g., p-anisaldehyde), unsaturated carbonyls (e.g., 1-octen-3-one, ( E)-2-octenal, ( E, E)-2,4-decadienal), and cyclic monoterpenoids (e.g., 3,9-epoxy- p-menth-1-ene, 3,6-dimethyl-3a,4,5,7a-tetrahydro-1-benzofuran-2(3 H)-one). Several compounds from the latter group were described for the first time in Pleurotus spp. After separation of the mycelia from the medium, the aroma compounds were mainly enriched in the culture supernatant. The sensory analysis of the mycelium correlated well with the instrumental results.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The feruloyl esterase (FAE) gene EST1 from the basidiomycete Pleurotus sapidus was heterologously expressed in Escherichia coli and Pichia pastoris. Catalytically active recombinant Est1 was secreted using P. pastoris as a host. For expression in P. pastoris, the expression vector pPIC9K was applied. The EST1 gene was cloned with an N-terminal α-mating factor pre-pro sequence and expressed under the control of a methanol inducible alcohol oxidase 1 promotor. Est1 was purified to homogeneity using ion exchange and hydrophobic interaction chromatography. The recombinant Est1 showed optima at pH 5.0 and 50 °C, and released ferulic acid from saccharide esters and from the natural substrate destarched wheat bran. Substrate specificity profile and descriptor-based analysis demonstrated unique properties, showing that Est1 did not fit into the current FAE classification model. Transferuloylation synthesis of feruloyl-saccharide esters was proven for mono- and disaccharides.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号