Nanotubes

纳米管
  • 文章类型: Journal Article
    在这项研究中,我们评估了通过各种施加电压序列通过阳极氧化制造的直径定制的TiO2纳米管层的药物释放行为:常规的恒定施加电位为20V(45nm)和60V(80nm),20/60V步进电位(50nm[两个直径]),和20-60V扫描电位(49nm[全锥形])(括号中的值表示纳米管层顶部的内管直径)。50nm(两个直径)和49nm(全锥形)样品的结构在纳米管层顶部的内径小于80nm样品的内径,而纳米管层底部的外径与80nm样品的尺寸几乎相同。80nm的样品,具有最大的纳米管直径和长度,展示了最大的爆发释放,其次是50nm(两个直径),49nm(全锥形),和45nm样品。较小的管顶部显著抑制了从50nm(两个直径)和49nm(全锥形)样品的初始突释药物量和释放速率。另一方面,对于50nm(两个直径)样品,观察到缓慢释放的药物量占总释放药物量的最大比例。因此,50nm(两个直径)实现了抑制的初始爆发释放和大的存储容量。因此,这项研究,第一次,应用具有调制直径(两个直径和全锥形)的TiO2纳米管层以实现具有定制药物释放特性的局部药物递送系统(LDDS)。
    In this study, we evaluated the drug release behavior of diameter customized TiO2 nanotube layers fabricated by anodization with various applied voltage sequences: conventional constant applied potentials of 20 V (45 nm) and 60 V (80 nm), a 20/60 V stepped potential (50 nm [two-diameter]), and a 20-60 V swept potential (49 nm [full-tapered]) (values in parentheses indicate the inner tube diameter at the top part of nanotube layers). The structures of the 50 nm (two-diameter) and 49 nm (full-tapered) samples had smaller inner diameters at the top part of nanotube layers than that of the 80 nm sample, while the outer diameters at the bottom part of nanotube layers were almost the same size as the 80 nm sample. The 80 nm sample, which had the largest nanotube diameter and length, exhibited the greatest burst release, followed by the 50 nm (two-diameter), 49 nm (full-tapered), and 45 nm samples. The initial burst released drug amounts and release rates from the 50 nm (two-diameter) and 49 nm (full-tapered) samples were significantly suppressed by the smaller tube top. On the other hand, the largest proportion of the slow released drug amount to the total released drug amount was observed for the 50 nm (two-diameter) sample. Thus, 50 nm (two-diameter) achieved suppressed initial burst release and large storage capacity. Therefore, this study has, for the first time, applied TiO2 nanotube layers with modulated diameters (two-diameter and full-tapered) to the realization of a localized drug delivery system (LDDS) with customized drug release properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    受碳纳米管强烈光吸收的启发,我们提出了一种制造方法,涉及一维TiO2/Bi2S3QDs纳米管(TBNTs)具有可见红光可激发的光电性能。通过整合异质结的构造,量子限制效应,和形态学修饰,光电流达到9.22μA/cm2,是TiO2纳米管(TNTs)的66倍。然后,通过将红光响应的光电活性水凝胶敷料(TBCHA)将TBNTs嵌入到具有良好生物相容性的基于胶原/透明质酸的仿生细胞外基质水凝胶中,旨在促进伤口愈合和皮肤功能恢复。这种方法主要基于电刺激在调节神经功能和免疫反应中的公认重要性。严重烧伤常伴有上皮神经网络的广泛损伤,导致兴奋功能丧失和难以自发愈合,而常规敷料不足以解决神经神经支配的关键需求。此外,我们强调了TBCHA光电水凝胶促进神经末梢神经支配的非凡能力,促进皮肤亚结构的修复,并调节深度烧伤模型中的免疫反应。这种水凝胶不仅支持伤口闭合和胶原蛋白合成,而且促进血管重建,免疫调节,和神经恢复。这种基于光电的疗法为深度烧伤和功能性组织再生的全面修复提供了强大的解决方案。意义:我们探索了具有可见红光兴奋性和高光电转换性能的1DTiO2/Bi2S3纳米管的制备。通过集成异质结,量子吸收效应,和形态学修饰,TiO2/Bi2S3纳米管的光电流可达9.22μA/cm²,在625nm的光照下,这是TiO2纳米管的66倍。有效的红光兴奋性解决了由短波激发引起的生物安全性差和组织穿透率低的问题。此外,我们强调了TiO2/Bi2S3纳米管集成光电水凝胶在促进神经末梢神经支配和调节免疫反应方面的显着能力。这项工作提出了一种新兴的远程治疗策略,被动电刺激,为修复深度烧伤伤口提供了强大的助力。
    Inspired by the strong light absorption of carbon nanotubes, we propose a fabrication approach involving one-dimensional TiO2/Bi2S3 QDs nanotubes (TBNTs) with visible red-light excitable photoelectric properties. By integrating the construction of heterojunctions, quantum confinement effects, and morphological modifications, the photocurrent reached 9.22 μA/cm2 which is 66 times greater than that of TiO2 nanotubes (TNTs). Then, a red light-responsive photoelectroactive hydrogel dressing (TBCHA) was developed by embedding TBNTs into a collagen/hyaluronic acid-based biomimetic extracellular matrix hydrogel with good biocompatibility, aiming to promote wound healing and skin function restoration. This approach is primarily grounded in the recognized significance of electrical stimulation in modulating nerve function and immune responses. Severe burns are often accompanied by extensive damage to epithelial-neural networks, leading to a loss of excitatory function and difficulty in spontaneous healing, while conventional dressings inadequately address the critical need for nerve reinnervation. Furthermore, we highlight the remarkable ability of the TBCHA photoelectric hydrogel to promote the reinnervation of nerve endings, facilitate the repair of skin substructures, and modulate immune responses in a deep burn model. This hydrogel not only underpins wound closure and collagen synthesis but also advances vascular reformation, immune modulation, and neural restoration. This photoelectric-based therapy offers a robust solution for the comprehensive repair of deep burns and functional tissue regeneration. STATEMENT OF SIGNIFICANCE: We explore the fabrication of 1D TiO2/Bi2S3 nanotubes with visible red-light excitability and high photoelectric conversion properties. By integrating heterojunctions, quantum absorption effects, and morphological modifications, the photocurrent of TiO2/Bi2S3 nanotubes could reach 9.22 μA/cm², which is 66 times greater than that of TiO2 nanotubes under 625 nm illumination. The efficient red-light excitability solves the problem of poor biosafety and low tissue penetration caused by shortwave excitation. Furthermore, we highlight the remarkable ability of the TiO2/Bi2S3 nanotubes integrated photoelectric hydrogel in promoting the reinnervation of nerve endings and modulating immune responses. This work proposes an emerging therapeutic strategy of remote, passive electrical stimulation, offering a robust boost for repairing deep burn wounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过水热合成开发了ZnO纳米棒无纺布(ZNRN),以促进预防呼吸道病原体的传播。通过响应面法提高了ZNRN的超疏水性和抗菌性能。合成的材料表现出显著的防水性,水接触角为163.9°,因此对大肠杆菌的抗菌率为91.8%(E.大肠杆菌)和79.75%的金黄色葡萄球菌(S.金黄色葡萄球菌)。这表明具有较薄肽聚糖的大肠杆菌可能比金黄色葡萄球菌更容易被杀死。这项研究确定了合成条件对抗菌效果的显着影响,全面的多变量分析阐明了潜在的相关性。此外,通过SEM和XRD分析对ZNRN的ZnO纳米棒结构进行了表征。它赋予超疏水性(从而防止细菌粘附到ZNRN表面)和抗菌能力(从而通过刺穿这些纳米棒破坏细胞)的性质。因此,希望将两个这样的特征对齐,以帮助支持个人防护设备的开发,这有助于避免呼吸道感染的传播。
    ZnO nanorod nonwoven fabrics (ZNRN) were developed through hydrothermal synthesis to facilitate the prevention of the transmission of respiratory pathogens. The superhydrophobicity and antibacterial properties of ZNRN were improved through the response surface methodology. The synthesized material exhibited significant water repellency, indicated by a water contact angle of 163.9°, and thus demonstrated antibacterial rates of 91.8% for Escherichia coli (E. coli) and 79.75% for Staphylococcus aureus (S. aureus). This indicated that E. coli with thinner peptidoglycan may be more easily killed than S. aureus. This study identified significant effects of synthesis conditions on the antibacterial effectiveness, with comprehensive multivariate analyses elucidating the underlying correlations. In addition, the ZnO nanorod structure of ZNRN was characterized through SEM and XRD analyses. It endows the properties of superhydrophobicity (thus preventing bacteria from adhering to the ZNRN surface) and antibacterial capacity (thus damaging cells through the puncturing of these nanorods). Consequently, the alignment of two such features is desired to help support the development of personal protective equipment, which assists in avoiding the spread of respiratory infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    减少肾移植排斥反应的追求强调了发展非侵入性,精确的诊断技术。这些技术旨在检测抗体介导的排斥反应(ABMR)和T细胞介导的排斥反应(TCMR)。无症状,有潜在肾损害的风险。管理由ABMR和TCMR引起的拒绝的协议不同,和诊断传统上依赖于侵入性活检程序。因此,使用纳米传感芯片的会聚系统,拉曼光谱,并引入AI技术,以便于使用从没有重大异常的患者获得的血清样本进行诊断,ABMR,和肾移植后的TCMR。组织活检和Banff评分分析在组间进行验证,将同时获得的5μL血清添加到基于Au-ZnO纳米棒的表面增强拉曼散射传感芯片上,获得拉曼光谱信号。机器学习算法对主成分-线性判别分析和主成分-偏最小二乘判别分析的准确率分别为93.53%和98.82%,分别。胶原蛋白(肾损伤的指示),肌酐,和氨基酸衍生的信号(肾功能标志物)有助于这种准确性;然而,这种高准确性主要是由于该系统能够分析广谱的各种生物标志物.
    The quest to reduce kidney transplant rejection has emphasized the urgent requirement for the development of non-invasive, precise diagnostic technologies. These technologies aim to detect antibody-mediated rejection (ABMR) and T-cell-mediated rejection (TCMR), which are asymptomatic and pose a risk of potential kidney damage. The protocols for managing rejection caused by ABMR and TCMR differ, and diagnosis has traditionally relied on invasive biopsy procedures. Therefore, a convergence system using a nano-sensing chip, Raman spectroscopy, and AI technology was introduced to facilitate diagnosis using serum samples obtained from patients with no major abnormality, ABMR, and TCMR after kidney transplantation. Tissue biopsy and Banff score analysis were performed across the groups for validation, and 5 μL of serum obtained at the same time was added onto the Au-ZnO nanorod-based Surface-Enhanced Raman Scattering sensing chip to obtain Raman spectroscopy signals. The accuracy of machine learning algorithms for principal component-linear discriminant analysis and principal component-partial least squares discriminant analysis was 93.53% and 98.82%, respectively. The collagen (an indicative of kidney injury), creatinine, and amino acid-derived signals (markers of kidney function) contributed to this accuracy; however, the high accuracy was primarily due to the ability of the system to analyze a broad spectrum of various biomarkers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    层状或链状材料由于其有趣的物理性质而受到了重要的研究关注,当材料从块状(三维)变薄到薄的二维薄片或一维(1D)链形式时,这可能会发生巨大变化。具有A=Si或Ge和X=S或Se的化学计量AX2的材料形成特别吸引人的半导体类。例如,块状硅二硫族化合物(SiX2)由范德华力保持在一起的1D链组成。尽管这种结构配置有可能在一维极限内揭示有趣的物理现象,获得SiX2单链一直是具有挑战性的。我们在这里通过实验和理论检查低链数极限的SiX2材料。碳纳米管作为生长模板,稳定和保护结构,和原子分辨率扫描透射电子显微镜直接识别原子结构。对于SiX2观察到两种不同的链结构。还合成了SixGe1-xS2(1-y)Se2y四元合金链并对其进行了表征,展示了在原子链水平上可调的半导体特性。密度泛函理论计算表明,这些合金链的带隙可以通过成分工程进行广泛的调整。这项工作提供了在单链极限下合成和控制半导体成分以定制材料特性的可能性。
    Layered or chain materials have received significant research attention owing to their interesting physical properties, which can dramatically change when the material is thinned from bulk (three-dimensional) to thin two-dimensional sheet or one-dimensional (1D) chain form. Materials with the stoichiometry AX2 with A = Si or Ge and X = S or Se form an especially intriguing semiconducting class. For example, bulk silicon dichalcogenides (SiX2) consist of 1D chains held together by van der Waals forces. Although this structural configuration has the potential to reveal interesting physical phenomena within the 1D limit, obtaining SiX2 single chains has been challenging. We here examine experimentally and theoretically SiX2 materials in the low chain number limit. Carbon nanotubes serve as growth templates and stabilize and protect the structures, and atomic-resolution scanning transmission electron microscopy directly identifies the atomic structure. Two distinct chain structures are observed for SiX2. SixGe1-xS2(1-y)Se2y quaternary alloy chains are also synthesized and characterized, demonstrating tunable semiconducting properties at the atomic-chain level. Density functional theory calculations reveal that the band gap of these alloy chains can be widely tuned through composition engineering. This work offers the possibilities for synthesizing and controlling semiconductor compositions at the single-chain limit to tailor material properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    骨整合是决定植入成功的最重要因素。通过阳极氧化制备的TiO2纳米管的表面改性在促进骨形成方面具有显著的优势。然而,这种现象背后的机制仍然难以理解。在这里,我们表明纳米形貌表现出开放和干净的纳米管结构和强亲水性,纳米形态显著促进了粘附,扩散,和干细胞的成骨分化。探索机制,我们发现纳米形态可以通过激活Piezo1和增加细胞内Ca2+来增强线粒体氧化磷酸化(OxPhos)。OxPhos的增加可以显着提高细胞质中乙酰辅酶A的水平,但不会显着提高细胞核中乙酰辅酶A的水平。这有利于β-catenin的乙酰化和稳定性,并最终促进成骨。本研究为纳米形态学研究干细胞成骨的调控机制提供了新的解释。
    Osseointegration is the most important factor determining implant success. The surface modification of TiO2 nanotubes prepared by anodic oxidation has remarkable advantages in promoting bone formation. However, the mechanism behind this phenomenon is still unintelligible. Here we show that the nanomorphology exhibited open and clean nanotube structure and strong hydrophilicity, and the nanomorphology significantly facilitated the adhesion, proliferation, and osteogenesis differentiation of stem cells. Exploring the mechanism, we found that the nanomorphology can enhance mitochondrial oxidative phosphorylation (OxPhos) by activating Piezo1 and increasing intracellular Ca2+. The increase in OxPhos can significantly uplift the level of acetyl-CoA in the cytoplasm but not significantly raise the level of acetyl-CoA in the nucleus, which was beneficial for the acetylation and stability of β-catenin and ultimately promoted osteogenesis. This study provides a new interpretation for the regulatory mechanism of stem cell osteogenesis by nanomorphology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胰岛素和C肽作为糖尿病和某些肝病的临床指标起着至关重要的作用。然而,关于同时检测微量血清中胰岛素和C肽的研究有限。有必要开发一种具有高灵敏度和特异性的新方法来同时检测胰岛素和C肽。
    使用简单的湿化学方法制造了核-壳-卫星分层结构的纳米复合材料作为SERS生物传感器,采用4-MBA和DTNB进行识别,抗体进行特异性捕获。金纳米棒(AuNRs)用拉曼报道分子和银纳米粒子(AgNP)修饰,建立高灵敏度的SERS标签,用于检测胰岛素和C肽。抗体修饰的商业羧化磁珠@抗体用作捕获探针。通过探针捕获目标材料并结合SERS标签,形成“三明治”复合结构,用于后续检测。
    在优化条件下,制备的纳米复合材料可用于同时检测胰岛素和C肽,检出限为4.29×10-5pM和1.76×10-10nM。胰岛素浓度(4.29×10-5-4.29pM)与1075cm-1处的SERS强度呈强线性相关,在检测人血清样品中具有高回收率(96.4-105.3%)和低RSD(0.8%-10.0%)。同时,C肽浓度(1.76×10-10-1.76×10-3nM)也与1333cm-1处的SERS强度呈特定的线性相关,回收率为85.4%-105.0%,RSD为1.7%-10.8%。
    这一突破提供了一种小说,敏感,方便,稳定的方法,用于糖尿病和某些肝病的临床诊断。总的来说,我们的发现为生物医学研究领域做出了重大贡献,为改善糖尿病和肝病的诊断和监测开辟了新的可能性。
    UNASSIGNED: Insulin and C-peptide played crucial roles as clinical indicators for diabetes and certain liver diseases. However, there has been limited research on the simultaneous detection of insulin and C-peptide in trace serum. It is necessary to develop a novel method with high sensitivity and specificity for detecting insulin and C-peptide simultaneously.
    UNASSIGNED: A core-shell-satellites hierarchical structured nanocomposite was fabricated as SERS biosensor using a simple wet-chemical method, employing 4-MBA and DTNB for recognition and antibodies for specific capture. Gold nanorods (Au NRs) were modified with Raman reporter molecules and silver nanoparticles (Ag NPs), creating SERS tags with high sensitivity for detecting insulin and C-peptide. Antibody-modified commercial carboxylated magnetic bead@antibody served as the capture probes. Target materials were captured by probes and combined with SERS tags, forming a \"sandwich\" composite structure for subsequent detection.
    UNASSIGNED: Under optimized conditions, the nanocomposite fabricated could be used to detect simultaneously for insulin and C-peptide with the detection limit of 4.29 × 10-5 pM and 1.76 × 10-10 nM in serum. The insulin concentration (4.29 × 10-5-4.29 pM) showed a strong linear correlation with the SERS intensity at 1075 cm-1, with high recoveries (96.4-105.3%) and low RSD (0.8%-10.0%) in detecting human serum samples. Meanwhile, the C-peptide concentration (1.76 × 10-10-1.76 × 10-3 nM) also showed a specific linear correlation with the SERS intensity at 1333 cm-1, with recoveries 85.4%-105.0% and RSD 1.7%-10.8%.
    UNASSIGNED: This breakthrough provided a novel, sensitive, convenient and stable approach for clinical diagnosis of diabetes and certain liver diseases. Overall, our findings presented a significant contribution to the field of biomedical research, opening up new possibilities for improved diagnosis and monitoring of diabetes and liver diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞膜表现出许多高度弯曲的形态,例如芽,纳米管,定义细胞器轮廓的池状薄片。这里,我们使用包裹在巨大囊泡中的葡聚糖和聚(乙二醇)的双水相系统模拟细胞分隔。在渗透放气时,囊泡膜形成纳米管,在囊泡内部的液-液界面发生令人惊讶的形态转变。在这些接口上,纳米管转化为通过短膜颈与母囊泡连接的类似水箱的双膜片(DMS)。使用超分辨率(受激发射损耗)显微镜和理论考虑,我们构建了一个形态学图,预测管到板的转变,这是由自由能的减少驱动的。纳米管结可以通过阻止水流入管中而阻止管到板的转变。因为纳米管和DMS通常都是由细胞膜形成的,了解这些膜形态之间的形成和转化,可以深入了解细胞器的起源和进化。
    Cellular membranes exhibit a multitude of highly curved morphologies such as buds, nanotubes, cisterna-like sheets defining the outlines of organelles. Here, we mimic cell compartmentation using an aqueous two-phase system of dextran and poly(ethylene glycol) encapsulated in giant vesicles. Upon osmotic deflation, the vesicle membrane forms nanotubes, which undergo surprising morphological transformations at the liquid-liquid interfaces inside the vesicles. At these interfaces, the nanotubes transform into cisterna-like double-membrane sheets (DMS) connected to the mother vesicle via short membrane necks. Using super-resolution (stimulated emission depletion) microscopy and theoretical considerations, we construct a morphology diagram predicting the tube-to-sheet transformation, which is driven by a decrease in the free energy. Nanotube knots can prohibit the tube-to-sheet transformation by blocking water influx into the tubes. Because both nanotubes and DMSs are frequently formed by cellular membranes, understanding the formation and transformation between these membrane morphologies provides insight into the origin and evolution of cellular organelles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在室温下创建用于庚醛检测的高性能气体传感器需要开发包含不同空间配置的传感材料。功能部件,和活跃的表面。在这项研究中,我们采用了一种直接的方法,将水热策略与超声处理相结合,以产生具有纳米杆簇形式的介孔石墨烯量子点/锑酸铋(GQDs/BiSbO4)。BiSbO4掺入适当含量的GQD,导致显著改善的属性,如提高灵敏度(59.6@30ppm),较低的检测阈值(356ppb),和更快的反应时间(40秒)。提出了一种利用BiSbO4固有优势的协同机制,虽然其独特的介孔中空立方结构,氧空位的存在,GQD提供的催化增强导致庚醛检测的显着改善。这项工作介绍了一种简单而有效的方法,用于制作复杂的微纳米结构,以优化空间设计,功能,和活性介孔表面,为庚醛传感应用显示出巨大的希望。
    Creating high-performance gas sensors for heptanal detection at room temperature demands the development of sensing materials that incorporate distinct spatial configurations, functional components, and active surfaces. In this study, we employed a straightforward method combining hydrothermal strategy with ultrasonic processing to produce mesoporous graphene quantum dots/bismuth antimonate (GQDs/BiSbO4) with nanorod cluster forms. The BiSbO4 was incorporated with appropriate contents of GQDs resulting in significantly improved attributes such as heightened sensitivity (59.6@30 ppm), a lower threshold for detection (356 ppb), and quicker period for response (40 s). A synergistic mechanism that leverages the inherent advantages of BiSbO4 was proposed, while its distinctive mesoporous hollow cubic structure, the presence of oxygen vacancies, and the catalytic enhancement provided by GQDs lead to a marked improvement in heptanal detection. This work introduces a straightforward and effective method for crafting sophisticated micro-nanostructures that optimize spatial design, functionality, and active mesoporous surfaces, showing great promise for heptanal sensing applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    最近的研究表明,碳纳米管在肿瘤光热治疗中显示出良好的潜力。在这项研究中,我们旨在研究纳米氧化钛涂层多壁碳纳米管(MCNTs)对结直肠癌(CRC)的治疗潜力.首先,我们在MCNTs的表面上修饰TiO2纳米片,以获得纳米TiO2包覆的MCNTs。接下来,我们对纳米TiO2包覆的MCNTs进行了细胞相容性验证,发现纳米TiO2包覆的碳纳米管在一定浓度范围(0~200μg/ml)内是安全的。有趣的是,纳米TiO2包覆的MCNTs在近红外激光照射下对CRC细胞具有良好的杀伤作用。随后,纳米TiO2涂层MCNTs显著促进近红外激光照射的促凋亡作用,并显著抑制NIR激光照射下CRC细胞中细胞周期蛋白CCNA1和CCND1的表达,这表明纳米TiO2包覆的MCNTs在近红外激光照射下通过调节细胞凋亡和细胞周期发挥抗CRC作用。此外,纳米TiO2包覆的MCNTs在近红外激光照射下加速对AKT信号通路的抑制作用。最后,建立了细胞系来源的异种移植模型,结果表明,纳米TiO2涂层的MCNTs在近红外激光照射下在体内表现出优异的肿瘤杀伤能力。总的来说,我们的结果表明,NIR激光照射纳米TiO2包覆的MCNTs可以作为治疗CRC的有效策略。本文受版权保护。保留所有权利。
    Recent studies have shown that carbon nanotubes display good potential in tumor photothermal therapy. In this study, we aimed to investigate the therapeutic potential of nano-titanium oxide-coated multi-walled carbon nanotubes (MCNTs) against colorectal cancer (CRC). Firstly, we modified TiO2 nanosheets on the surface of MCNTs to obtain nano-TiO2-coated MCNTs. Next, we conducted cell compatibility validation on nano-TiO2-coated MCNTs, and found that nano-TiO2-coated MCNTs were safe within a certain concentration range (0∼200 μg/ml). Interestingly, nano-TiO2-coated MCNTs displayed a good killing effect in CRC cells under NIR laser irradiation. Subsequently, nano-TiO2-coated MCNTs markedly promoted the proapoptotic effects of NIR laser irradiation, and significantly inhibited the expression of cell cycle proteins CCNA1 and CCND1 in CRC cells under NIR laser irradiation, which indicated that nano-TiO2-coated MCNTs exerted anti-CRC effects under NIR laser irradiation by regulating cell apoptosis and cell cycle. Furthermore, nano-TiO2-coated MCNTs accelerated inhibitory effects on the AKT signaling pathway under NIR laser irradiation. Finally, a cell line-derived xenograft model was established, and the results showed that nano-TiO2-coated MCNTs significantly exhibited superior tumor-killing ability under NIR laser irradiation in vivo. Collectively, our results demonstrate that nano-TiO2-coated MCNTs with NIR laser irradiation may serve as an effective strategy for the treatment of CRC. This article is protected by copyright. All rights reserved.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号