NLRs

NLR
  • 文章类型: Journal Article
    核苷酸结合和寡聚化结构域(NOD)样受体(NLR)作为细胞质模式识别受体(PRR)在先天免疫中起重要作用。在过去的十年里,在理解NLR家族成员调节免疫系统功能的机制方面取得了相当大的进展,特别是炎症小体和下游炎症信号的形成。然而,最近的研究表明,NLR的一些成员,包括Nlrp12,NLRX1和NLRC3,在炎症信号的负调节中很重要,并参与各种疾病的发展,包括炎症性疾病和癌症。基于此,在这次审查中,我们首先总结了主要参与NLRs的规范和非规范核因子-κB(NF-κB)信号通路之间的相互作用,然后强调上述NLR负调节炎症信号应答的机制以及它们在肿瘤进展中的作用,最后总结了对这些NLR具有治疗作用的合成和天然衍生物,它们被认为是克服炎性疾病的潜在治疗剂。
    Nucleotide-binding and oligomerization structural domain (NOD)-like receptors (NLRs) play an important role in innate immunity as cytoplasmic pattern recognition receptors (PRRs). Over the past decade, considerable progress has been made in understanding the mechanisms by which NLR family members regulate immune system function, particularly the formation of inflammasome and downstream inflammatory signals. However, recent studies have shown that some members of the NLRs, including Nlrp12, NLRX1, and NLRC3, are important in the negative regulation of inflammatory signaling and are involved in the development of various diseases, including inflammatory diseases and cancer. Based on this, in this review, we first summarize the interactions between canonical and non-canonical nuclear factor-κB (NF-κB) signaling pathways that are mainly involved in NLRs, then highlight the mechanisms by which the above NLRs negatively regulate inflammatory signaling responses as well as their roles in tumor progression, and finally summarize the synthetic and natural derivatives with therapeutic effects on these NLRs, which are considered as potential therapeutic agents for overcoming inflammatory diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在植物中,核苷酸结合位点和富含亮氨酸的重复蛋白(NLR)在效应子触发免疫(ETI)中起关键作用。然而,NLR介导的抗病潜在的确切机制仍然难以捉摸.先前的研究表明,NLR基因对Pik-H4通过与转录因子OsBIHD1相互作用而赋予稻瘟病抗性,从而导致激素途径的上调。在本研究中,我们鉴定了RNA识别基序(RRM)蛋白,OsRRM2,在囊泡和叶绿体中与Pik1-H4和Pik2-H4相互作用。OsRRM2通过上调抗性基因和与叶绿体免疫相关的基因对Pik-H4介导的水稻稻瘟病抗性表现出适度的影响。此外,通过指数富集使用配体的系统进化来阐明OsRRM2的RNA结合序列。转录组分析进一步表明OsRRM2促进叶绿体基因ndhB的RNA编辑。总的来说,我们的发现揭示了一种促进NLR基因对易位并调节叶绿体免疫的叶绿体RRM蛋白,从而弥合ETI和叶绿体免疫之间的差距。
    In plants, nucleotide-binding site and leucine-rich repeat proteins (NLRs) play pivotal roles in effector-triggered immunity (ETI). However, the precise mechanisms underlying NLR-mediated disease resistance remain elusive. Previous studies have demonstrated that the NLR gene pair Pik-H4 confers resistance to rice blast disease by interacting with the transcription factor OsBIHD1, consequently leading to the upregulation of hormone pathways. In the present study, we identified an RNA recognition motif (RRM) protein, OsRRM2, which interacted with Pik1-H4 and Pik2-H4 in vesicles and chloroplasts. OsRRM2 exhibited a modest influence on Pik-H4-mediated rice blast resistance by upregulating resistance genes and genes associated with chloroplast immunity. Moreover, the RNA-binding sequence of OsRRM2 was elucidated using systematic evolution of ligands by exponential enrichment. Transcriptome analysis further indicated that OsRRM2 promoted RNA editing of the chloroplastic gene ndhB. Collectively, our findings uncovered a chloroplastic RRM protein that facilitated the translocation of the NLR gene pair and modulated chloroplast immunity, thereby bridging the gap between ETI and chloroplast immunity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通常被称为埃塞俄比亚芥菜的芸苔属(BBCC)是含有黑芸苔属(BB)和甘蓝属(CC)基因组的天然异源四倍体。它是非洲东北部地区特有的油料作物。虽然种植有限,B.carinata是有价值的,因为它对影响U's三角形广泛栽培的芸苔属物种的大多数病原体具有抗性/高度耐受性。我们使用长期阅读的OxfordNanopore测序和Bionano光学图报告了卡氏芽孢杆菌登录号HC20的染色体尺度基因组组装。该组装体具有〜39.8Mb的支架N50并覆盖〜1.11Gb的基因组。我们比较了U's三角形物种的长阅读基因组组装,发现二倍体和异源多倍体之间存在广泛的基因共线性,没有重大基因丢失的证据。因此,B.juncea(AABB),B.napus(AACC),可以认为是严格的异源多倍体。我们对松芽孢杆菌的核苷酸结合和富含亮氨酸的重复免疫受体(NLR)库进行了分类,确定了465个NLR,并将这些与其他芸苔属物种的NLR进行了比较。我们调查了两个物种之间的种间杂交中,松芽孢杆菌和结球芽孢杆菌的组成基因组之间的早期基因组相互作用的程度和性质。除了成分B基因组之间的预期重组,在A和C基因组之间观察到广泛的同源交换。种间杂交,因此,可用于将抗病性从卡氏芽孢杆菌转移到辅助芽孢杆菌,并扩大两个同种四倍体物种的遗传基础。
    Brassica carinata (BBCC) commonly referred to as Ethiopian mustard is a natural allotetraploid containing the genomes of Brassica nigra (BB) and Brassica oleracea (CC). It is an oilseed crop endemic to the northeastern regions of Africa. Although it is under limited cultivation, B. carinata is valuable as it is resistant/highly tolerant to most of the pathogens affecting widely cultivated Brassica species of the U\'s triangle. We report a chromosome-scale genome assembly of B. carinata accession HC20 using long-read Oxford Nanopore sequencing and Bionano optical maps. The assembly has a scaffold N50 of ~39.8 Mb and covers ~1.11 Gb of the genome. We compared the long-read genome assemblies of the U\'s triangle species and found extensive gene collinearity between the diploids and allopolyploids with no evidence of major gene losses. Therefore, B. juncea (AABB), B. napus (AACC), and B. carinata can be regarded as strict allopolyploids. We cataloged the nucleotide-binding and leucine-rich repeat immune receptor (NLR) repertoire of B. carinata and, identified 465 NLRs, and compared these with the NLRs in the other Brassica species. We investigated the extent and nature of early-generation genomic interactions between the constituent genomes of B. carinata and B. juncea in interspecific crosses between the two species. Besides the expected recombination between the constituent B genomes, extensive homoeologous exchanges were observed between the A and C genomes. Interspecific crosses, therefore, can be used for transferring disease resistance from B. carinata to B. juncea and broadening the genetic base of the two allotetraploid species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物在自然环境中面临着各种病原体的无情攻击,他们已经进化出了无数跨越不同时间尺度的策略。细胞表面模式识别受体(PRRs)检测病原体或病原体入侵过程中释放的内源性分子的保守诱导子,启动植物的第一道防线,称为模式触发免疫(PTI),这赋予了抗病性的基线水平。在宿主细胞内,病原体效应物通过核苷酸结合/富含亮氨酸的重复(NLR)受体感知,然后激活第二道防线:效应物触发免疫(ETI),提供更有效和持久的防御机制。此外,PTI和ETI协同协作以增强抗病性并共同触发下游防御反应的级联。本文对植物防御反应进行了全面综述,概述了植物免疫的逐步激活以及PTI-ETI协同信号转导之间的相互作用。
    Plants face a relentless onslaught from a diverse array of pathogens in their natural environment, to which they have evolved a myriad of strategies that unfold across various temporal scales. Cell surface pattern recognition receptors (PRRs) detect conserved elicitors from pathogens or endogenous molecules released during pathogen invasion, initiating the first line of defence in plants, known as pattern-triggered immunity (PTI), which imparts a baseline level of disease resistance. Inside host cells, pathogen effectors are sensed by the nucleotide-binding/leucine-rich repeat (NLR) receptors, which then activate the second line of defence: effector-triggered immunity (ETI), offering a more potent and enduring defence mechanism. Moreover, PTI and ETI collaborate synergistically to bolster disease resistance and collectively trigger a cascade of downstream defence responses. This article provides a comprehensive review of plant defence responses, offering an overview of the stepwise activation of plant immunity and the interactions between PTI-ETI synergistic signal transduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究提出了一种全基因组鉴定的NOD样受体(NLRs)在金pompano,它先天免疫的关键。我们确定了30个ToNLR,分析它们的染色体位置,特点,进化关系,积极选择的证据,与黄尾王鱼合音。我们的发现将这些NLR分为三个主要亚组:NLRA,NLRC,和独特的ToNLRX1。接触无乳链球菌后,大多数ToNLR在脾脏中的表达增加,而NLRC3like13,NLRC3like16和NLRC3like19在肾脏中如此。隐虫暴徒暴露后,我们根据感染部位将我们的组分为对照组(BFS),附着有托的皮肤(TAS),和附近区域皮肤(NRS)。ToAPAF1和ToNOD1表达在NRS中上升,与ToNLRC5、ToNWD1和ToCIITA的表达降低相反。其他ToNLR在TAS中显示可变表达。总的来说,本研究为进一步探索金帕诺先天免疫奠定了基础。
    This study presents a genome-wide identification of NOD-like receptors (NLRs) in the golden pompano, key to its innate immunity. We identified 30 ToNLRs, analyzing their chromosomal positions, characteristics, evolutionary relationships, evidence of positive selection, and synteny with the yellowtail kingfish. Our findings categorize these NLRs into three main subgroups: NLRA, NLRC, and the distinct ToNLRX1. Post-exposure to Streptococcus agalactiae, most ToNLRs increased expression in the spleen, whereas NLRC3like13, NLRC3like16, and NLRC3like19 so in the kidneys. Upon Cryptocaryon irritans exposure, we categorized our groups based on the site of infection into the control group (BFS), the trophont-attached skin (TAS), and the nearby region skin (NRS). ToAPAF1 and ToNOD1 expressions rose in the NRS, in contrast to decreased expressions of ToNLRC5, ToNWD1 and ToCIITA. Other ToNLRs showed variable expressions in the TAS. Overall, this research lays the groundwork for further exploration of innate immunity in the golden pompano.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由真菌Colletotrichumsublineola(Cs)引起的高粱炭疽病是作物的破坏性疾病。这里,我们描述了编码典型的核苷酸结合型富含亮氨酸重复序列(NLR)受体的Anthraconc抗性基因(ARG4和ARG5)的鉴定。ARG4和ARG5分别是在高粱系SAP135和P9830中鉴定的显性抗性基因,显示对Cs的广谱抗性。使用SAP135和P9830与TAM428杂交产生的群体进行独立遗传研究,使用分子标记进行精细定位,比较基因组学和基因表达研究确定ARG4和ARG5是针对Cs菌株的抗性基因。有趣的是,ARG4和ARG5均位于由〜1Mb基因组区隔开的连锁基因座处的重复NLR基因簇内。SAP135和P9830各自仅携带ARG基因之一,同时在第二基因座处具有隐性等位基因。在抗性P9830品系中仅存在两个拷贝的ARG5候选基因,而在易感品系中鉴定出五个非功能性拷贝。抗性亲本及其携带ARG4或ARG5的重组自交系对菌株Csgl1和Csgrg具有抗性,表明这些基因具有重叠的特异性。ARG4和ARG5在抗性中的作用通过携带显示增加的易感性的独立隐性等位基因的高粱品系得到验证。ARG4和ARG5位于复杂基因座内,显示可能由重复导致的有趣单倍型结构和拷贝数变异。总的来说,具有独特单倍型结构的抗炭疽病基因的鉴定为遗传研究和抗性育种奠定了基础。
    Sorghum anthracnose caused by the fungus Colletotrichum sublineola (Cs) is a damaging disease of the crop. Here, we describe the identification of ANTHRACNOSE RESISTANCE GENES (ARG4 and ARG5) encoding canonical nucleotide-binding leucine-rich repeat (NLR) receptors. ARG4 and ARG5 are dominant resistance genes identified in the sorghum lines SAP135 and P9830, respectively, that show broad-spectrum resistance to Cs. Independent genetic studies using populations generated by crossing SAP135 and P9830 with TAM428, fine mapping using molecular markers, comparative genomics and gene expression studies determined that ARG4 and ARG5 are resistance genes against Cs strains. Interestingly, ARG4 and ARG5 are both located within clusters of duplicate NLR genes at linked loci separated by ~1 Mb genomic region. SAP135 and P9830 each carry only one of the ARG genes while having the recessive allele at the second locus. Only two copies of the ARG5 candidate genes were present in the resistant P9830 line while five non-functional copies were identified in the susceptible line. The resistant parents and their recombinant inbred lines carrying either ARG4 or ARG5 are resistant to strains Csgl1 and Csgrg suggesting that these genes have overlapping specificities. The role of ARG4 and ARG5 in resistance was validated through sorghum lines carrying independent recessive alleles that show increased susceptibility. ARG4 and ARG5 are located within complex loci displaying interesting haplotype structures and copy number variation that may have resulted from duplication. Overall, the identification of anthracnose resistance genes with unique haplotype stucture provides a foundation for genetic studies and resistance breeding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物拥有一系列免疫受体,可以抵抗病原体的攻击。这些免疫受体可以位于核质中或植物细胞表面上。NLR基因簇最近由于其在适应识别病原体方面的鲁棒性和延展性而获得了动力。NLR的模块化域体系结构为其与病原体的军备竞赛提供了有价值的线索。此外,植物NLR经历了功能专业化,具有以下作用之一:感知病原体效应子(传感器NLR)或协调免疫信号(辅助或执行者NLR)。传感器NLR直接识别效应物,而辅助NLR充当多于一个传感器NLR的信号传导集线器,以将效应物识别转换成成功的植物免疫应答。此外,传感器NLR可以使用保护,诱饵,或集成的诱饵模型来直接或间接识别效应器。因此,通过研究植物宿主的NLR曲目,可以对宿主的进化历史和防御潜力做出推断,这使得科学家能够理解和利用植物宿主中抗性的分子基础。这篇综述提供了不同类别NLR的结构和生化特性的快照,这些特性使它们能够感知病原体效应子并通过讨论这些NLR抗性体在植物防御过程中的激活机制来理解这些发现。我们还总结了有关此NLR结构生物学应用的未来指令。据我们所知,这篇综述是首次整理NLRs的所有广泛防御特性,这些特性使其成为应用植物生物技术研究的有价值的候选对象。
    Plants possess an arsenal of immune receptors to allow for numerous tiers of defense against pathogen attack. These immune receptors can be located either in the nucleocytoplasm or on the plant cell surface. NLR gene clusters have recently gained momentum owing to their robustness and malleability in adapting to recognize pathogens. The modular domain architecture of an NLR provides valuable clues about its arms race with pathogens. Additionally, plant NLRs have undergone functional specialization to have either one of the following roles: to sense pathogen effectors (sensor NLRs) or co-ordinate immune signaling (helper or executer NLRs). Sensor NLRs directly recognize effectors whilst helper NLRs act as signaling hubs for more than one sensor NLR to transduce the effector recognition into a successful plant immune response. Furthermore, sensor NLRs can use guard, decoy, or integrated decoy models to recognize effectors directly or indirectly. Thus, by studying a plant host\'s NLR repertoire, inferences can be made about a host\'s evolutionary history and defense potential which allows scientists to understand and exploit the molecular basis of resistance in a plant host. This review provides a snapshot of the structural and biochemical properties of the different classes of NLRs which allow them to perceive pathogen effectors and contextualize these findings by discussing the activation mechanisms of these NLR resistosomes during plant defense. We also summarize future directives on applications of this NLR structural biology. To our knowledge, this review is the first to collate all vast defense properties of NLRs which make them valuable candidates for study in applied plant biotechnology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对昆虫的植物识别的知识在很大程度上限于针对吸汁昆虫的一些抗性(R)基因。超敏反应(HR)表征了几种病理性系统中依赖于R基因的单基因植物性状。类似HR的细胞死亡可以由卷心菜白蝴蝶的卵触发(Pierisspp。),卷心菜作物的害虫(芸苔属。),在摄食损害发生之前,降低卵的存活率并代表有效的植物抗性性状。这里,我们对黑芥菜中的菜青虫卵诱导的HR样细胞死亡进行了遗传定位(B.nigra).我们表明,HR样细胞死亡分离为孟德尔性状,并在B3号染色体上确定了一个显性基因座,称为PEK(Pieriseg-killing)。11个基因位于大约50kb的区域,包括编码细胞内TIR-NBS-LRR(TNL)受体蛋白的基因簇。PEK基因座在我们作图种群的亲本种质之间以及黑芽孢杆菌参考基因组之间具有高度多态性。我们的研究是第一个鉴定出可能参与黑芽孢杆菌昆虫卵诱导的HR样细胞死亡的单个基因座的研究。进一步精细映射,比较基因组学和PEK基因座的验证将揭示这些TNL受体在杀卵HR中的作用。
    Knowledge of plant recognition of insects is largely limited to a few resistance (R) genes against sap-sucking insects. Hypersensitive response (HR) characterizes monogenic plant traits relying on R genes in several pathosystems. HR-like cell death can be triggered by eggs of cabbage white butterflies (Pieris spp.), pests of cabbage crops (Brassica spp.), reducing egg survival and representing an effective plant resistance trait before feeding damage occurs. Here, we performed genetic mapping of HR-like cell death induced by Pieris brassicae eggs in the black mustard Brassica nigra (B. nigra). We show that HR-like cell death segregates as a Mendelian trait and identified a single dominant locus on chromosome B3, named PEK (Pieris  egg- killing). Eleven genes are located in an approximately 50 kb region, including a cluster of genes encoding intracellular TIR-NBS-LRR (TNL) receptor proteins. The PEK locus is highly polymorphic between the parental accessions of our mapping populations and among B. nigra reference genomes. Our study is the first one to identify a single locus potentially involved in HR-like cell death induced by insect eggs in B. nigra. Further fine-mapping, comparative genomics and validation of the PEK locus will shed light on the role of these TNL receptors in egg-killing HR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    炎症性肠病(IBD)是一种涉及宿主遗传学的慢性胃肠道炎症性疾病,微生物组,和炎症反应。目前的共识是肠黏膜屏障的破坏是IBD的核心发病机制,包括肠道微生物因素,异常的免疫反应,肠粘膜屏障受损。累积数据显示,核苷酸结合和寡聚化结构域(NOD)样受体(NLR)是维持肠粘膜屏障稳态的主要介质,它们在感知共生微生物区中起着关键作用,保持体内平衡,调节肠道炎症。通过植物药阻断NLR炎性体激活可能是预防IBD进展的有希望的方法。在这次审查中,我们系统地介绍了NLRs在调节肠粘膜屏障稳态中的多种作用,并重点总结了天然产物抗IBD的活性和潜在机制。旨在为IBD的发病机制和精准治疗提出新的方向。
    Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disease that involves host genetics, the microbiome, and inflammatory responses. The current consensus is that the disruption of the intestinal mucosal barrier is the core pathogenesis of IBD, including intestinal microbial factors, abnormal immune responses, and impaired intestinal mucosal barrier. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are dominant mediators in maintaining the homeostasis of the intestinal mucosal barrier, which play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Blocking NLRs inflammasome activation by botanicals may be a promising way to prevent IBD progression. In this review, we systematically introduce the multiple roles of NLRs in regulating intestinal mucosal barrier homeostasis and focus on summarizing the activities and potential mechanisms of natural products against IBD. Aiming to propose new directions on the pathogenesis and precise treatment of IBD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号