NLRs

NLR
  • 文章类型: Journal Article
    背景:海绵(Porifera门)不断与微生物相互作用。它们通过过滤喂养从水柱中吃草的微生物,并且在体内拥有共生伴侣。在实验设置中,与海水微生物相比,海绵以更低的速率吸收共生体。这表明海绵具有区分微生物的能力,并优先在非共生微生物中放牧,尽管对歧视的潜在机制仍然知之甚少。基因组研究表明,与其他动物组相比,海绵提供了一个扩展的免疫受体库,特别是NLR,SRCR,和GPCRs,少数实验表明,海绵在遇到微生物激发子时调节这些受体的表达。我们假设海绵可能依赖于其不同的poriferan免疫受体库的差异表达,以在过滤喂养时感知不同的微生物聚生体。为了测试这个,我们表征了两种海绵物种的转录组反应,Aplysinaaerophoba和Dysideaavara,与与海水微生物孵育相比,与从A.aerophoba提取的微生物聚生体一起孵育。1小时后取样海绵,3h,和5小时用于RNA-Seq差异基因表达分析。
    结果:D.与Aerophoba共生体孵育的avara调节与免疫相关的基因的表达,泛素化,和信号。在一组差异表达的免疫基因中,我们鉴定了核苷酸寡聚化结构域(NOD)样受体(NLR)的不同家族。这些结果代表了第一个实验证据,即不同类型的NLR参与海绵中的微生物识别。相比之下,A.aerophoba对其共生体的转录组反应涉及的基因相对较少,并且缺乏编码免疫受体的基因。
    结论:我们的工作表明:(i)海绵在微生物暴露后的转录组反应可能意味着由于它们与微生物的相互作用而对基线基因表达进行“微调”,(ii)不同物种之间海绵对微生物接触的不同反应,可能是由于物种特异性特征或与宿主的性状有关,和(iii)属于不同家族的NLR样基因的免疫受体在对微生物的差异反应中起作用,无论是共生生物还是食物细菌。海绵中这些受体的调节进一步证明了NLR在无脊椎动物宿主-微生物相互作用中的潜在作用。海绵对微生物反应的研究说明了研究不同动物群体如何扩大我们对免疫特异性和共生进化的认识。
    BACKGROUND: Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis.
    RESULTS: D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors.
    CONCLUSIONS: Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply \"fine-tuning\" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host\'s traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在植物中,核苷酸结合位点和富含亮氨酸的重复蛋白(NLR)在效应子触发免疫(ETI)中起关键作用。然而,NLR介导的抗病潜在的确切机制仍然难以捉摸.先前的研究表明,NLR基因对Pik-H4通过与转录因子OsBIHD1相互作用而赋予稻瘟病抗性,从而导致激素途径的上调。在本研究中,我们鉴定了RNA识别基序(RRM)蛋白,OsRRM2,在囊泡和叶绿体中与Pik1-H4和Pik2-H4相互作用。OsRRM2通过上调抗性基因和与叶绿体免疫相关的基因对Pik-H4介导的水稻稻瘟病抗性表现出适度的影响。此外,通过指数富集使用配体的系统进化来阐明OsRRM2的RNA结合序列。转录组分析进一步表明OsRRM2促进叶绿体基因ndhB的RNA编辑。总的来说,我们的发现揭示了一种促进NLR基因对易位并调节叶绿体免疫的叶绿体RRM蛋白,从而弥合ETI和叶绿体免疫之间的差距。
    In plants, nucleotide-binding site and leucine-rich repeat proteins (NLRs) play pivotal roles in effector-triggered immunity (ETI). However, the precise mechanisms underlying NLR-mediated disease resistance remain elusive. Previous studies have demonstrated that the NLR gene pair Pik-H4 confers resistance to rice blast disease by interacting with the transcription factor OsBIHD1, consequently leading to the upregulation of hormone pathways. In the present study, we identified an RNA recognition motif (RRM) protein, OsRRM2, which interacted with Pik1-H4 and Pik2-H4 in vesicles and chloroplasts. OsRRM2 exhibited a modest influence on Pik-H4-mediated rice blast resistance by upregulating resistance genes and genes associated with chloroplast immunity. Moreover, the RNA-binding sequence of OsRRM2 was elucidated using systematic evolution of ligands by exponential enrichment. Transcriptome analysis further indicated that OsRRM2 promoted RNA editing of the chloroplastic gene ndhB. Collectively, our findings uncovered a chloroplastic RRM protein that facilitated the translocation of the NLR gene pair and modulated chloroplast immunity, thereby bridging the gap between ETI and chloroplast immunity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物拥有一系列免疫受体,可以抵抗病原体的攻击。这些免疫受体可以位于核质中或植物细胞表面上。NLR基因簇最近由于其在适应识别病原体方面的鲁棒性和延展性而获得了动力。NLR的模块化域体系结构为其与病原体的军备竞赛提供了有价值的线索。此外,植物NLR经历了功能专业化,具有以下作用之一:感知病原体效应子(传感器NLR)或协调免疫信号(辅助或执行者NLR)。传感器NLR直接识别效应物,而辅助NLR充当多于一个传感器NLR的信号传导集线器,以将效应物识别转换成成功的植物免疫应答。此外,传感器NLR可以使用保护,诱饵,或集成的诱饵模型来直接或间接识别效应器。因此,通过研究植物宿主的NLR曲目,可以对宿主的进化历史和防御潜力做出推断,这使得科学家能够理解和利用植物宿主中抗性的分子基础。这篇综述提供了不同类别NLR的结构和生化特性的快照,这些特性使它们能够感知病原体效应子并通过讨论这些NLR抗性体在植物防御过程中的激活机制来理解这些发现。我们还总结了有关此NLR结构生物学应用的未来指令。据我们所知,这篇综述是首次整理NLRs的所有广泛防御特性,这些特性使其成为应用植物生物技术研究的有价值的候选对象。
    Plants possess an arsenal of immune receptors to allow for numerous tiers of defense against pathogen attack. These immune receptors can be located either in the nucleocytoplasm or on the plant cell surface. NLR gene clusters have recently gained momentum owing to their robustness and malleability in adapting to recognize pathogens. The modular domain architecture of an NLR provides valuable clues about its arms race with pathogens. Additionally, plant NLRs have undergone functional specialization to have either one of the following roles: to sense pathogen effectors (sensor NLRs) or co-ordinate immune signaling (helper or executer NLRs). Sensor NLRs directly recognize effectors whilst helper NLRs act as signaling hubs for more than one sensor NLR to transduce the effector recognition into a successful plant immune response. Furthermore, sensor NLRs can use guard, decoy, or integrated decoy models to recognize effectors directly or indirectly. Thus, by studying a plant host\'s NLR repertoire, inferences can be made about a host\'s evolutionary history and defense potential which allows scientists to understand and exploit the molecular basis of resistance in a plant host. This review provides a snapshot of the structural and biochemical properties of the different classes of NLRs which allow them to perceive pathogen effectors and contextualize these findings by discussing the activation mechanisms of these NLR resistosomes during plant defense. We also summarize future directives on applications of this NLR structural biology. To our knowledge, this review is the first to collate all vast defense properties of NLRs which make them valuable candidates for study in applied plant biotechnology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    炎症性肠病(IBD)是一种涉及宿主遗传学的慢性胃肠道炎症性疾病,微生物组,和炎症反应。目前的共识是肠黏膜屏障的破坏是IBD的核心发病机制,包括肠道微生物因素,异常的免疫反应,肠粘膜屏障受损。累积数据显示,核苷酸结合和寡聚化结构域(NOD)样受体(NLR)是维持肠粘膜屏障稳态的主要介质,它们在感知共生微生物区中起着关键作用,保持体内平衡,调节肠道炎症。通过植物药阻断NLR炎性体激活可能是预防IBD进展的有希望的方法。在这次审查中,我们系统地介绍了NLRs在调节肠粘膜屏障稳态中的多种作用,并重点总结了天然产物抗IBD的活性和潜在机制。旨在为IBD的发病机制和精准治疗提出新的方向。
    Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disease that involves host genetics, the microbiome, and inflammatory responses. The current consensus is that the disruption of the intestinal mucosal barrier is the core pathogenesis of IBD, including intestinal microbial factors, abnormal immune responses, and impaired intestinal mucosal barrier. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are dominant mediators in maintaining the homeostasis of the intestinal mucosal barrier, which play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Blocking NLRs inflammasome activation by botanicals may be a promising way to prevent IBD progression. In this review, we systematically introduce the multiple roles of NLRs in regulating intestinal mucosal barrier homeostasis and focus on summarizing the activities and potential mechanisms of natural products against IBD. Aiming to propose new directions on the pathogenesis and precise treatment of IBD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    炎性体是在细胞检测到感染性或非感染性应激时刺激炎症的细胞质细胞器。虽然许多基础工作都集中在炎症体活动的感染相关方面,最近的研究强调了炎性体在非感染性细胞和机体功能中的作用。在这里,我们讨论了炎症小体成分的进化,并强调了允许炎症小体调节生理过程的特征。我们专注于新出现的数据,这些数据突出了炎症小体蛋白在生殖调节中的重要性,发展,和恶性肿瘤。提出了一个框架来说明这些发现的背景。
    Inflammasomes are cytoplasmic organelles that stimulate inflammation upon cellular detection of infectious or non-infectious stress. While much foundational work has focused on the infection-associated aspects of inflammasome activities, recent studies have highlighted the role of inflammasomes in non-infectious cellular and organismal functions. Herein, we discuss the evolution of inflammasome components and highlight characteristics that permit inflammasome regulation of physiologic processes. We focus on emerging data that highlight the importance of inflammasome proteins in the regulation of reproduction, development, and malignancy. A framework is proposed to contextualize these findings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    现代植物病理学依赖于生物信息学方法来创建新的植物疾病诊断工具。近年来,由于基因组学和分子生物学技术的快速发展,已经产生了大量的生物学数据。重要农业作物测序的进展使人们有可能更好地了解植物-病原体相互作用和植物抗性。宿主病原体基因组数据的可用性为检索提供了有效的帮助,注释,分析,并确定在基因和基因组水平上表征的功能方面。物理作图有助于从不同植物物种中鉴定和分离几种候选抗性(R)基因。大量的遗传变异,比如基因组中的致病突变,已经使用生物信息学工具进行了识别和表征,这些理想的突变被用来发展抗病性。此外,作物基因组编辑工具,即CRISPR(成簇调节间隔短回文重复)/Cas9(CRISPR相关)系统,为开发耐久抗性提供新颖有效的策略。这篇综述文件描述了与数据库有关的一些方面,工具,以及用于表征植物疾病管理的抗性(R)基因的技术。
    Modern plant pathology relies on bioinformatics approaches to create novel plant disease diagnostic tools. In recent years, a significant amount of biological data has been generated due to rapid developments in genomics and molecular biology techniques. The progress in the sequencing of agriculturally important crops has made it possible to develop a better understanding of plant-pathogen interactions and plant resistance. The availability of host-pathogen genome data offers effective assistance in retrieving, annotating, analyzing, and identifying the functional aspects for characterization at the gene and genome levels. Physical mapping facilitates the identification and isolation of several candidate resistance (R) genes from diverse plant species. A large number of genetic variations, such as disease-causing mutations in the genome, have been identified and characterized using bioinformatics tools, and these desirable mutations were exploited to develop disease resistance. Moreover, crop genome editing tools, namely the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 (CRISPR-associated) system, offer novel and efficient strategies for developing durable resistance. This review paper describes some aspects concerning the databases, tools, and techniques used to characterize resistance (R) genes for plant disease management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物细胞内核苷酸结合域,富含亮氨酸的含重复序列的受体(NLR)在检测到病原体效应物时激活强大的免疫反应。NLR如何诱导下游免疫防御基因仍然知之甚少。介体复合物在将信号从基因特异性转录因子传导到基因转录/激活的转录机制中起着核心作用。在这项研究中,我们证明介体复合物的MED10b和MED7介导茉莉酸依赖性转录抑制,茄科植物中的卷曲螺旋NLR(CNL)调节MED10b/MED7以激活免疫。使用番茄CNLSw-5b,赋予病毒抗性,作为一个模型,我们发现Sw-5b的CC域与MED10b直接相互作用。敲除/降低MED10b和其他亚基,包括Mediator中间模块的MED7,可激活植物对topspovirus的防御。发现MED10b与MED7直接相互作用,MED7与JAZ蛋白直接相互作用,其作为茉莉酸(JA)信号的转录阻遏物。MED10b-MED7-JAZ一起可以强烈抑制JA应答基因的表达。激活的Sw-5bCC干扰MED10b和MED7之间的相互作用,导致激活JA依赖的针对tspovirus的防御信号。此外,我们发现,包括来自茄科的辅助NLRNRC在内的各种其他CNL的CC结构域调节MED10b/MED7以激活对不同病原体的防御。一起,我们的发现表明,MED10b/MED7是茉莉酸依赖性转录抑制的先前未知的阻遏物,并受到茄科中多种CNL的调节,以激活JA特异性防御途径。
    Plant intracellular nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs) activate a robust immune response upon detection of pathogen effectors. How NLRs induce downstream immune defense genes remains poorly understood. The Mediator complex plays a central role in transducing signals from gene-specific transcription factors to the transcription machinery for gene transcription/activation. In this study, we demonstrate that MED10b and MED7 of the Mediator complex mediate jasmonate-dependent transcription repression, and coiled-coil NLRs (CNLs) in Solanaceae modulate MED10b/MED7 to activate immunity. Using the tomato CNL Sw-5b, which confers resistance to tospovirus, as a model, we found that the CC domain of Sw-5b directly interacts with MED10b. Knockout/down of MED10b and other subunits including MED7 of the middle module of Mediator activates plant defense against tospovirus. MED10b was found to directly interact with MED7, and MED7 directly interacts with JAZ proteins, which function as transcriptional repressors of jasmonic acid (JA) signaling. MED10b-MED7-JAZ together can strongly repress the expression of JA-responsive genes. The activated Sw-5b CC interferes with the interaction between MED10b and MED7, leading to the activation of JA-dependent defense signaling against tospovirus. Furthermore, we found that CC domains of various other CNLs including helper NLR NRCs from Solanaceae modulate MED10b/MED7 to activate defense against different pathogens. Together, our findings reveal that MED10b/MED7 serve as a previously unknown repressor of jasmonate-dependent transcription repression and are modulated by diverse CNLs in Solanaceae to activate the JA-specific defense pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:自RenSeq协议首次发布以来的十年中,该方法已被证明是研究植物抗病性并为育种计划提供目标基因的有力工具。自从该方法首次发布以来,随着新技术的出现,它继续得到发展,计算能力的增加使新的生物信息学方法成为可能。最近,这包括开发基于k-mer的关联遗传学方法,使用PacBioHiFi数据,和图形基因分型与诊断RenSeq。然而,目前还没有一个统一的工作流程,研究人员必须从各种来源自己配置方法。这使得再现性和版本控制成为挑战,并限制了对具有生物信息学专业知识的人进行这些分析的能力。
    结果:这里我们介绍HISS,由三个工作流程组成,这些工作流程将用户从原始的RenSeq读取到识别疾病抗性基因的候选基因。这些工作流程进行来自具有感兴趣的抗性表型的登录名的富集的HiFi读段的组装。然后在关联遗传学方法(AgRenSeq)中使用具有和缺乏抗性的一组种质来鉴定与抗性表型正相关的重叠群。然后在这些重叠群上鉴定候选基因,并使用使用dRenSeq的图形基因分型方法评估其在面板中的存在或不存在。这些工作流是通过Snakemake实现的,基于python的工作流管理器。软件依赖项要么随版本一起提供,要么与conda一起处理。所有代码都是免费提供的,并在GNUGPL-3.0许可证下分发。
    结论:HISS提供了一个用户友好的,便携式,和易于定制的方法来识别植物中的新的抗病基因。它可以很容易地安装,所有的依赖关系都在内部处理或随版本一起发布,并且在这些生物信息学分析的易用性方面有了显著的改进。
    BACKGROUND: In the ten years since the initial publication of the RenSeq protocol, the method has proved to be a powerful tool for studying disease resistance in plants and providing target genes for breeding programmes. Since the initial publication of the methodology, it has continued to be developed as new technologies have become available and the increased availability of computing power has made new bioinformatic approaches possible. Most recently, this has included the development of a k-mer based association genetics approach, the use of PacBio HiFi data, and graphical genotyping with diagnostic RenSeq. However, there is not yet a unified workflow available and researchers must instead configure approaches from various sources themselves. This makes reproducibility and version control a challenge and limits the ability to perform these analyses to those with bioinformatics expertise.
    RESULTS: Here we present HISS, consisting of three workflows which take a user from raw RenSeq reads to the identification of candidates for disease resistance genes. These workflows conduct the assembly of enriched HiFi reads from an accession with the resistance phenotype of interest. A panel of accessions both possessing and lacking the resistance are then used in an association genetics approach (AgRenSeq) to identify contigs positively associated with the resistance phenotype. Candidate genes are then identified on these contigs and assessed for their presence or absence in the panel with a graphical genotyping approach that uses dRenSeq. These workflows are implemented via Snakemake, a python-based workflow manager. Software dependencies are either shipped with the release or handled with conda. All code is freely available and is distributed under the GNU GPL-3.0 license.
    CONCLUSIONS: HISS provides a user-friendly, portable, and easily customised approach for identifying novel disease resistance genes in plants. It is easily installed with all dependencies handled internally or shipped with the release and represents a significant improvement in the ease of use of these bioinformatics analyses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物已经进化出两层针对生物胁迫的保护:PAMP触发的免疫(PTI)和效应子触发的免疫(ETI)。ETI的主要机制涉及核苷酸结合的富含亮氨酸的重复免疫受体(NLR)。尽管已经在几种植物物种中研究了NLR基因,仍然缺乏跨各种物种的NLR的综合数据库。这里,我们对100个高质量植物基因组(PlantNLRatlas)中的NLR基因进行了全面分析。PlantNLRatlas总共包括68,452NLR,其中3,689是全长的,64,763是部分长度的NLR。大多数NLR组是系统成簇的。此外,发现结构域序列在每个NLR组中高度保守.我们的PlantNLRatlas数据集是RefPlantNLR的补充,已被实验证实的NLR基因的集合。ThePlantNLRatlasshouldprovehelpfulforcomparativeinvestigationofNLRacrossarangeofplantgroups,包括未研究的分类群。最后,PlantNLRatlas资源旨在帮助该领域超越对NLR结构和功能的整体理解。
    Plants have evolved two layers of protection against biotic stress: PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). The primary mechanism of ETI involves nucleotide-binding leucine-rich repeat immune receptors (NLRs). Although NLR genes have been studied in several plant species, a comprehensive database of NLRs across a diverse array of species is still lacking. Here, we present a thorough analysis of NLR genes across 100 high-quality plant genomes (PlantNLRatlas). The PlantNLRatlas includes a total of 68,452 NLRs, of which 3,689 are full-length and 64,763 are partial-length NLRs. The majority of NLR groups were phyletically clustered. In addition, the domain sequences were found to be highly conserved within each NLR group. Our PlantNLRatlas dataset is complementary to RefPlantNLR, a collection of NLR genes which have been experimentally confirmed. The PlantNLRatlas should prove helpful for comparative investigations of NLRs across a range of plant groups, including understudied taxa. Finally, the PlantNLRatlas resource is intended to help the field move past a monolithic understanding of NLR structure and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号