DNA-Directed DNA Polymerase

DNA 定向 DNA 聚合酶
  • 文章类型: Journal Article
    DNA聚合酶theta(Polθ)是一种DNA解旋酶-聚合酶蛋白,可促进DNA修复,并且对同源定向修复(HDR)因子具有合成致死性。因此,Pole是HDR缺陷癌症中一种有前途的精准肿瘤药物靶标。这里,我们使用cryo-EM表征了Polθ解旋酶(Polθ-hel)小分子抑制剂(AB25583)的结合和作用机制。AB25583对Pole-hel,选择性杀死BRCA1/2缺陷细胞,并在携带致病性BRCA1/2突变的癌细胞中与奥拉帕尼协同作用。Cryo-EM在3.0-3.2µ上主要发现二聚体Polθ-hel:AB25583复杂结构。这些结构揭示了解旋酶中央通道深处的结合袋,这强调了AB25583的高特异性和效力。低温EM结构与生化数据的结合表明,AB25583通过变构机制抑制了Polθ-hel解旋酶的ATPase活性。这些关于AB25583抑制的详细结构数据和见解为加速HDR缺陷型癌症中靶向Pole-hel的药物开发铺平了道路。
    DNA polymerase theta (Polθ) is a DNA helicase-polymerase protein that facilitates DNA repair and is synthetic lethal with homology-directed repair (HDR) factors. Thus, Polθ is a promising precision oncology drug-target in HDR-deficient cancers. Here, we characterize the binding and mechanism of action of a Polθ helicase (Polθ-hel) small-molecule inhibitor (AB25583) using cryo-EM. AB25583 exhibits 6 nM IC50 against Polθ-hel, selectively kills BRCA1/2-deficient cells, and acts synergistically with olaparib in cancer cells harboring pathogenic BRCA1/2 mutations. Cryo-EM uncovers predominantly dimeric Polθ-hel:AB25583 complex structures at 3.0-3.2 Å. The structures reveal a binding-pocket deep inside the helicase central-channel, which underscores the high specificity and potency of AB25583. The cryo-EM structures in conjunction with biochemical data indicate that AB25583 inhibits the ATPase activity of Polθ-hel helicase via an allosteric mechanism. These detailed structural data and insights about AB25583 inhibition pave the way for accelerating drug development targeting Polθ-hel in HDR-deficient cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在滞后链染色质复制过程中,多个冈崎片段(OF)需要加工和核小体组装,但连接这些过程的机制仍不清楚.这里,使用透射电子显微镜和DNA连接酶Cdc9的快速降解,我们观察到在滞后链上积累的皮瓣结构,受Polδ的链置换活性和Fen1的核酸酶消化控制。相邻襟翼结构之间的距离表现出规则的模式,指示成熟的长度。虽然fen1Δ或通过聚合酶δ(Polδ;pol3exec-)增强的链置换活性对皮瓣间距离的影响最小,影响复制偶联核小体装配的突变体,如cac1Δ和mcm2-3A,显著改变它。DNAPolδ亚基Pol32的缺失,显著增加了这个距离。机械上,Pol32与组蛋白H3-H4结合,对于滞后链上的核小体组装至关重要。一起,我们认为Pol32在核小体组装和滞后链上OF的加工之间建立了联系。
    During lagging strand chromatin replication, multiple Okazaki fragments (OFs) require processing and nucleosome assembly, but the mechanisms linking these processes remain unclear. Here, using transmission electron microscopy and rapid degradation of DNA ligase Cdc9, we observed flap structures accumulated on lagging strands, controlled by both Pol δ\'s strand displacement activity and Fen1\'s nuclease digestion. The distance between neighboring flap structures exhibits a regular pattern, indicative of matured OF length. While fen1Δ or enhanced strand displacement activities by polymerase δ (Pol δ; pol3exo-) minimally affect inter-flap distance, mutants affecting replication-coupled nucleosome assembly, such as cac1Δ and mcm2-3A, do significantly alter it. Deletion of Pol32, a subunit of DNA Pol δ, significantly increases this distance. Mechanistically, Pol32 binds to histone H3-H4 and is critical for nucleosome assembly on the lagging strand. Together, we propose that Pol32 establishes a connection between nucleosome assembly and the processing of OFs on lagging strands.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:在暴露于EGFR抑制剂的结直肠癌(CRC)细胞中观察到的适应性诱变有助于耐药性和复发的发展。多项研究表明,在表现出适应性诱变方面,癌细胞和细菌之间存在平行关系。这种现象需要易错的跨损伤合成聚合酶(TLS聚合酶)的瞬时和协调升级,导致足以驱动抗性表型选择的幅度的诱变。
    方法:在本研究中,我们对CRC细胞内的调控框架进行了全面的泛转录组分析,目的是鉴定潜在的转录组模块,包括某些跨损伤聚合酶和控制它们的相关转录因子(TF)。我们的采样策略涉及从用西妥昔单抗治疗的肿瘤中收集转录组数据,EGFR抑制剂,未经治疗的CRC肿瘤,和结肠直肠来源的细胞系,导致不同的数据集。随后,我们使用加权相关网络分析识别了共调控模块,minKMEtosay阈值设置为0.5,以最小化假阳性模块识别,并将模块映射到STRING注释.此外,我们使用KBoost探索了影响这些模块的假定TFs,核PCA回归模型。
    结果:我们的分析未揭示西妥昔单抗治疗特异性的独特转录谱。此外,我们阐明了包含基因的共表达模块,例如,POLK,POLI,POLQ,REV1,POLN,和POLM。具体来说,POLK,POLI,和POLQ被分配给“蓝色”模块,其中还包括关键的DNA损伤反应酶,例如。BRCA1、BRCA2、MSH6和MSH2。为了描述这个模块的转录控制,我们调查了相关的TFs,突出突出的癌症相关TFs的作用,比如CENPA,HNF1A,E2F7
    结论:我们发现跨损伤聚合酶与DNA错配修复和细胞周期相关因子共同调节。我们没有,然而,确定了西妥昔单抗治疗特异性的任何网络,表明对EGFR抑制剂的反应与一般应激反应机制有关。
    BACKGROUND: Adaptive mutagenesis observed in colorectal cancer (CRC) cells upon exposure to EGFR inhibitors contributes to the development of resistance and recurrence. Multiple investigations have indicated a parallel between cancer cells and bacteria in terms of exhibiting adaptive mutagenesis. This phenomenon entails a transient and coordinated escalation of error-prone translesion synthesis polymerases (TLS polymerases), resulting in mutagenesis of a magnitude sufficient to drive the selection of resistant phenotypes.
    METHODS: In this study, we conducted a comprehensive pan-transcriptome analysis of the regulatory framework within CRC cells, with the objective of identifying potential transcriptome modules encompassing certain translesion polymerases and the associated transcription factors (TFs) that govern them. Our sampling strategy involved the collection of transcriptomic data from tumors treated with cetuximab, an EGFR inhibitor, untreated CRC tumors, and colorectal-derived cell lines, resulting in a diverse dataset. Subsequently, we identified co-regulated modules using weighted correlation network analysis with a minKMEtostay threshold set at 0.5 to minimize false-positive module identifications and mapped the modules to STRING annotations. Furthermore, we explored the putative TFs influencing these modules using KBoost, a kernel PCA regression model.
    RESULTS: Our analysis did not reveal a distinct transcriptional profile specific to cetuximab treatment. Moreover, we elucidated co-expression modules housing genes, for example, POLK, POLI, POLQ, REV1, POLN, and POLM. Specifically, POLK, POLI, and POLQ were assigned to the \"blue\" module, which also encompassed critical DNA damage response enzymes, for example. BRCA1, BRCA2, MSH6, and MSH2. To delineate the transcriptional control of this module, we investigated associated TFs, highlighting the roles of prominent cancer-associated TFs, such as CENPA, HNF1A, and E2F7.
    CONCLUSIONS: We found that translesion polymerases are co-regulated with DNA mismatch repair and cell cycle-associated factors. We did not, however, identified any networks specific to cetuximab treatment indicating that the response to EGFR inhibitors relates to a general stress response mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于模板非依赖性DNA聚合酶末端脱氧核苷酸转移酶(TdT)的酶促DNA写入技术具有促进DNA信息存储的潜力。TdT在从头合成单链DNA的能力上是独一无二的,但有局限性,包括核糖核苷酸存在的催化抑制和与复制聚合酶相比更慢的掺入率。我们预计蛋白质工程可以改善,调制,调整酶的特性,但是关于TdT序列-结构-功能关系的信息有限,无法促进合理的方法。因此,我们开发了一种易于修改的筛选试验,该试验可以高通量测量TdT活性,以评估大型TdT突变文库.我们通过改造TdT突变体证明了该测定法的能力,所述突变体在抑制剂存在下表现出提高的催化效率和提高的活性。我们筛选并鉴定了在选择性掺入脱氧核糖核苷酸和存在脱氧核糖核苷酸/核糖核苷酸混合物的情况下具有更大催化效率的TdT变体。利用这些来自筛选试验的信息,我们合理地设计了其他具有相同性质的TdT同系物。我们开发的基于乳液的检测方法是,据我们所知,这是第一个可以定量测量TdT活性且无需蛋白质纯化的高通量筛选测定法。
    Enzymatic DNA writing technologies based on the template-independent DNA polymerase terminal deoxynucleotidyl transferase (TdT) have the potential to advance DNA information storage. TdT is unique in its ability to synthesize single-stranded DNA de novo but has limitations, including catalytic inhibition by ribonucleotide presence and slower incorporation rates compared to replicative polymerases. We anticipate that protein engineering can improve, modulate, and tailor the enzyme\'s properties, but there is limited information on TdT sequence-structure-function relationships to facilitate rational approaches. Therefore, we developed an easily modifiable screening assay that can measure the TdT activity in high-throughput to evaluate large TdT mutant libraries. We demonstrated the assay\'s capabilities by engineering TdT mutants that exhibit both improved catalytic efficiency and improved activity in the presence of an inhibitor. We screened for and identified TdT variants with greater catalytic efficiency in both selectively incorporating deoxyribonucleotides and in the presence of deoxyribonucleotide/ribonucleotide mixes. Using this information from the screening assay, we rationally engineered other TdT homologues with the same properties. The emulsion-based assay we developed is, to the best of our knowledge, the first high-throughput screening assay that can measure TdT activity quantitatively and without the need for protein purification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    当复制叉遇到受损的DNA时,细胞利用损伤耐受机制来允许复制进行。这些包括分叉处的跨病变合成,折叠后间隙填充,和模板转换通过叉逆转或同源重组。这些不同的损伤容限机制的利用程度取决于细胞,组织,和特定于发展环境的线索,其中最后两个人知之甚少。为了解决这个差距,我们已经调查了果蝇的损伤耐受性反应。我们报告说,快速分裂的幼虫组织对DNA烷基化损伤的耐受性在很大程度上取决于跨病变合成。此外,我们表明,REV1蛋白在果蝇的损伤耐受性中起着多方面的作用。缺乏REV1的幼虫对甲磺酸甲酯(MMS)过敏,并且在MMS处理的组织中具有高度升高的γ-H2Av(果蝇γ-H2AX)病灶和染色体畸变水平。REV1C端结构域(CTD)丢失,它招募多个跨损伤聚合酶到损伤部位,使苍蝇对彩信敏感。在没有REV1CTD的情况下,DNA聚合酶eta和ζ成为MMS耐受性的关键。此外,果蝇缺乏REV3,聚合酶zeta的催化亚基,需要REV1的脱氧胞苷转移酶活性才能耐受MMS。一起,我们的研究结果表明,果蝇优先使用多种转损聚合酶来耐受烷基化损伤,并强调了REV1在协调该反应以防止基因组不稳定方面的关键作用.
    When replication forks encounter damaged DNA, cells utilize damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses in Drosophila melanogaster. We report that tolerance of DNA alkylation damage in rapidly dividing larval tissues depends heavily on translesion synthesis. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av (Drosophila γ-H2AX) foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Translesion合成(TLS)是真核细胞利用的DNA损伤耐受性机制,可在阻碍高保真复制机制的病变中复制DNA。在TLS中,使用一系列专门的DNA聚合酶,识别特定的DNA损伤,插入核苷酸穿过损伤,并扩展扭曲的引物模板。这允许细胞以突变为代价来保持遗传完整性。在人类中,TLS酶包括Y家族,插入聚合酶,Poln,Poli,波尔κ,Rev1和B家族扩展聚合酶Polζ,而在酿酒酵母中只有Poln,存在Rev1和Polz。为了绕过DNA损伤,TLS聚合酶合作,组装成一个复杂的真核滑动夹具,PCNA,称为TLS突变组。突变体组装取决于TLS酶的模块化结构域和亚基之间的蛋白质-蛋白质相互作用(PPI),以及它们与PCNA和DNA的相互作用。虽然TLS聚合酶和PPIs各自模块绕过DNA损伤的结构机制是众所周知的,他们在TLS复合体的背景下合作的机制仍然难以捉摸。这篇综述着重于TLS聚合酶的结构研究,并描述了从最近的高分辨率Cryo-EM研究中出现的TLS全酶组装体的作用情况。
    Translesion synthesis (TLS) is a mechanism of DNA damage tolerance utilized by eukaryotic cells to replicate DNA across lesions that impede the high-fidelity replication machinery. In TLS, a series of specialized DNA polymerases are employed, which recognize specific DNA lesions, insert nucleotides across the damage, and extend the distorted primer-template. This allows cells to preserve genetic integrity at the cost of mutations. In humans, TLS enzymes include the Y-family, inserter polymerases, Polη, Polι, Polκ, Rev1, and the B-family extender polymerase Polζ, while in S. cerevisiae only Polη, Rev1, and Polζ are present. To bypass DNA lesions, TLS polymerases cooperate, assembling into a complex on the eukaryotic sliding clamp, PCNA, termed the TLS mutasome. The mutasome assembly is contingent on protein-protein interactions (PPIs) between the modular domains and subunits of TLS enzymes, and their interactions with PCNA and DNA. While the structural mechanisms of DNA lesion bypass by the TLS polymerases and PPIs of their individual modules are well understood, the mechanisms by which they cooperate in the context of TLS complexes have remained elusive. This review focuses on structural studies of TLS polymerases and describes the case of TLS holoenzyme assemblies in action emerging from recent high-resolution Cryo-EM studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    复制应激损害基因组完整性。叉阻断病变,例如顺铂和其他化学治疗剂引起的病变,会阻止复制叉。在这些病变的下游重新灌注代表了复制重新开始的重要机制,然而,单链DNA(ssDNA)的空白留下,除非有效填充,可以作为核酸酶的入口点。新生的链缺口可以通过BRCA介导的同源性修复来修复。或者,间隙也可以通过跨损伤合成(TLS)聚合酶来填充。这些事件如何被监管仍然不清楚。这里,我们发现PARP10是一种特征不佳的单ADP核糖基转移酶,被招募到新生的链间隙以促进其修复。PARP10与泛素连接酶RAD18相互作用,并将其招募到这些结构中,导致复制因子PCNA的泛素化。PCNA泛素化,反过来,招募TLS聚合酶REV1来填补空白。我们表明,PARP10募集到缺口和随后的REV1介导的缺口填充既需要PARP10的催化活性,也需要其与PCNA相互作用的能力。此外,我们表明PARP10在BRCA缺陷细胞中过度活跃,它的失活增强了这些细胞的间隙积累和细胞毒性。我们的工作揭示了PARP10作为ssDNA缺口填充的调节剂,这促进了BRCA缺陷细胞的基因组稳定性。
    Replication stress compromises genomic integrity. Fork blocking lesions such as those induced by cisplatin and other chemotherapeutic agents arrest replication forks. Repriming downstream of these lesions represents an important mechanism of replication restart, however the single stranded DNA (ssDNA) gaps left behind, unless efficiently filled, can serve as entry point for nucleases. Nascent strand gaps can be repaired by BRCA-mediated homology repair. Alternatively, gaps can also be filled by translesion synthesis (TLS) polymerases. How these events are regulated is still not clear. Here, we show that PARP10, a poorly-characterized mono-ADP-ribosyltransferase, is recruited to nascent strand gaps to promote their repair. PARP10 interacts with the ubiquitin ligase RAD18 and recruits it to these structures, resulting in the ubiquitination of the replication factor PCNA. PCNA ubiquitination, in turn, recruits the TLS polymerase REV1 for gap filling. We show that PARP10 recruitment to gaps and the subsequent REV1-mediated gap filling requires both the catalytic activity of PARP10, and its ability to interact with PCNA. We moreover show that PARP10 is hyperactive in BRCA-deficient cells, and its inactivation potentiates gap accumulations and cytotoxicity in these cells. Our work uncovers PARP10 as a regulator of ssDNA gap filling, which promotes genomic stability in BRCA-deficient cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: English Abstract
    在日本官方检测未经授权的转基因(GM)木瓜的方法中,具有DNA聚合酶的两种类型的实时PCR试剂之一(TaqMan基因主混合物[TaqMan基因]或FastGeneQPCR探针Mastermixw/ROX[FastGene])主要用于测量。2022年,我们对未经授权的转基因木瓜品系PRSV-YK进行了实验室性能研究,结果表明,使用TaqMan基因与7500Fast和7500Real-TimePCR系统(ABI7500)和QuantStudio12KFlex(QS12K)获得了PRSV-YK检测测试的高阈值循环(Cq)值,表明假阴性的可能性。需要评估所有未经授权的GM木瓜线检测测试出现类似问题的可能性。在这项研究中,我们对未经授权的转基因木瓜品系(PRSV-YK,PRSV-SC,和PRSV-HN),花椰菜花叶病毒35S启动子(CaM),和木瓜阳性对照(Chy),并检查了每种测试的检测限(LOD)如何受到两种类型的DNA聚合酶(TaqMan基因和FastGene)和三种类型的实时PCR仪器(ABI7500,QS12K,和LightCycler480仪器II[LC480])。在使用ABI7500和QS12K的PRSV-YK和PRSV-SC检测试验中,用TaqMan基因测量显示比FastGene更高的LOD。在这种情况下,在扩增图上证实了指数扩增曲线;然而,扩增曲线没有越过ΔRn阈值线,并且在阈值线=0.2的情况下没有获得正确的Cq值。其他测试(PRSV-HN,CaM,和Chy与ABI7500和QS12K,使用LC480)进行的所有检测测试均显示,使用两种DNA聚合酶进行的每次测试的LOD均无重要差异。因此,用ABI7500或QS12K进行PRSV-YK和PRSV-SC检测测试时,FastGene应用于避免在低混合水平下含有GM木瓜系PRSV-YK和PRSV-SC的食物的假阴性。
    In the Japanese official detection method for unauthorized genetically modified (GM) papayas, one of two types of real-time PCR reagents with DNA polymerase (TaqMan Gene Master Mix [TaqMan Gene] or FastGene QPCR Probe Mastermix w/ROX [FastGene]) is primarily used for measurement. In 2022, we conducted a laboratory performance study on the unauthorized GM papaya line PRSV-YK, and the results revealed that high threshold cycle (Cq) values for the PRSV-YK detection test were obtained using TaqMan Gene with the 7500 Fast & 7500 Real-Time PCR System (ABI7500) and QuantStudio 12K Flex (QS12K), indicating the possibility of false negatives. The possibility of similar problems with all unauthorized GM papaya lines detection tests needs to be evaluated. In this study, we performed detection tests on unauthorized GM papaya lines (PRSV-YK, PRSV-SC, and PRSV-HN), the cauliflower mosaic virus 35S promotor (CaM), and a papaya positive control (Chy), and examined how the limits of detection (LOD) for each test are affected by two types of DNA polymerases (TaqMan Gene and FastGene) and three types of real-time PCR instruments (ABI7500, QS12K, and LightCycler 480 Instrument II [LC480]). In the PRSV-YK and PRSV-SC detection tests using ABI7500 and QS12K, measurement with TaqMan Gene showed a higher LOD than FastGene. In this case, an exponential amplification curve was confirmed on the amplification plot; however, the amplification curve did not cross the ΔRn threshold line and the correct Cq value was not obtained with a threshold line=0.2. The other tests (PRSV-HN, CaM, and Chy with ABI7500 and QS12K, and all detection tests with LC480) showed no important differences in the LOD for each test using either DNA polymerase. Therefore, when performing PRSV-YK and PRSV-SC detection tests with the ABI7500 or QS12K, FastGene should be used to avoid false negatives for foods containing GM papaya lines PRSV-YK and PRSV-SC at low mixing levels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在大肠杆菌中,在复制过程中,两个复制体是否沿着两个染色体臂独立移动,或者它们是否保持空间受限,存在争议。这里,我们使用高通量荧光显微镜在整个细胞周期中同时确定复制体和染色体位点的位置和短时间尺度(1s)运动.对几个基因座进行测定。我们发现(i)两个复制体沿着细胞的长轴和短轴被限制在〜250nm和〜120nm的区域,分别,(ii)染色体基因座根据其与复制起点的距离依次移动并通过该区域,和(iii)当复制基因座时,它的短时间尺度运动减慢。这种行为在不同的增长率下是相同的。总之,我们的数据支持复制时DNA向空间受限的复制体移动的模型.
    In Escherichia coli, it is debated whether the two replisomes move independently along the two chromosome arms during replication or if they remain spatially confined. Here, we use high-throughput fluorescence microscopy to simultaneously determine the location and short-time-scale (1 s) movement of the replisome and a chromosomal locus throughout the cell cycle. The assay is performed for several loci. We find that (i) the two replisomes are confined to a region of ~250 nm and ~120 nm along the cell\'s long and short axis, respectively, (ii) the chromosomal loci move to and through this region sequentially based on their distance from the origin of replication, and (iii) when a locus is being replicated, its short time-scale movement slows down. This behavior is the same at different growth rates. In conclusion, our data supports a model with DNA moving towards spatially confined replisomes at replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA聚合酶theta(Polθ)介导的末端连接(TMEJ)修复DNA双链断裂并赋予对遗传毒性剂的抗性。如何在分子水平上调节Polθ以发挥TMEJ仍然缺乏表征。我们发现Polθ与PARP1以HPFl非依赖性方式相互作用并被PARP1化。PARP1通过依赖PARylation的液体分层将Polθ募集到DNA损伤附近,然而,PARylatedPolθ由于无法结合DNA而无法进行TMEJ。PARG介导的Polθ去PARG激活其DNA结合和末端连接活性。与此一致,PARG对TMEJ至关重要,PARG对DNA损伤的时间募集与TMEJ激活和PARP1和PAR的消散相对应。总之,我们展示了TMEJ调控的两步时空机制。首先,PARP1PARylatePole并促进其在失活状态下募集到DNA损伤位点。PARG随后通过去除Pole上的抑制性PAR标记来激活TMEJ。
    DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号