DNA-Directed DNA Polymerase

DNA 定向 DNA 聚合酶
  • 文章类型: Journal Article
    DNA聚合酶ζ(Polζ)在复制受损的DNA模板中起着至关重要的作用,但由于其低保真度而有助于诱变。因此,确保严格控制Polζ的活性对于连续和准确的DNA复制至关重要,然而具体机制尚不清楚.这项研究揭示了人细胞中Polζ活性的调节机制。在正常情况下,自动抑制机制保持催化亚基,REV3L,inactive.在遇到复制压力时,然而,ATR介导的REV3L的S279簇磷酸化激活REV3L并通过胱天蛋白酶介导的途径触发其降解。这种调节限制了Polζ的活性,平衡其基本作用与其在复制应激期间引起的潜在突变。总的来说,我们的发现阐明了一种控制方案,该方案可以在具有挑战性的复制方案下微调Polζ的低保真聚合酶活性。
    DNA polymerase ζ (Pol ζ) plays an essential role in replicating damaged DNA templates but contributes to mutagenesis due to its low fidelity. Therefore, ensuring tight control of Pol ζ\'s activity is critical for continuous and accurate DNA replication, yet the specific mechanisms remain unclear. This study reveals a regulation mechanism of Pol ζ activity in human cells. Under normal conditions, an autoinhibition mechanism keeps the catalytic subunit, REV3L, inactive. Upon encountering replication stress, however, ATR-mediated phosphorylation of REV3L\'s S279 cluster activates REV3L and triggers its degradation via a caspase-mediated pathway. This regulation confines the activity of Pol ζ, balancing its essential role against its mutations causing potential during replication stress. Overall, our findings elucidate a control scheme that fine tunes the low-fidelity polymerase activity of Pol ζ under challenging replication scenarios.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    PARP抑制剂(PARPi),以它们诱导复制间隙和加速复制叉的能力而闻名,已经成为抗癌治疗的有效药物。然而,PARPi诱导的叉子加速的分子机制仍然难以捉摸。这里,我们表明PARPi对DNA复制的第一个诱导作用是复制叉速率增加,其次是原产地活动的二次减少。通过系统敲除人类DNA聚合酶,我们确定POLA1是PARPi引起的叉加速度的介体。这种加速取决于DNA聚合酶α和引发酶活性。此外,POLA1的耗尽增加了PARP抑制诱导的复制间隙的积累,使细胞对PARPi敏感。BRCA1耗尽的细胞特别容易在POLA1抑制下形成复制间隙。因此,BRCA1缺乏使细胞对POLA1抑制敏感。因此,我们的研究结果确立了POLA复合物在PARPi诱导的分叉加速中的重要作用,并提供了证据表明,滞后链合成代表了BRCA1缺陷细胞中的可靶向脆弱性.
    PARP inhibitors (PARPi), known for their ability to induce replication gaps and accelerate replication forks, have become potent agents in anticancer therapy. However, the molecular mechanism underlying PARPi-induced fork acceleration has remained elusive. Here, we show that the first PARPi-induced effect on DNA replication is an increased replication fork rate, followed by a secondary reduction in origin activity. Through the systematic knockdown of human DNA polymerases, we identify POLA1 as mediator of PARPi-induced fork acceleration. This acceleration depends on both DNA polymerase α and primase activities. Additionally, the depletion of POLA1 increases the accumulation of replication gaps induced by PARP inhibition, sensitizing cells to PARPi. BRCA1-depleted cells are especially susceptible to the formation of replication gaps under POLA1 inhibition. Accordingly, BRCA1 deficiency sensitizes cells to POLA1 inhibition. Thus, our findings establish the POLA complex as important player in PARPi-induced fork acceleration and provide evidence that lagging strand synthesis represents a targetable vulnerability in BRCA1-deficient cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:Duplodnavria领域中具有双链(ds)DNA基因组的病毒共享保守的结构基因模块,但在其DNA复制蛋白库中显示出广泛的变异。一些duplodnavirus编码(几乎)完整的复制系统,而另一些则缺乏(几乎)复制所需的所有基因,依靠主机复制机器。DNA聚合酶(DNAP)构成DNA复制装置的中心。复制型DNAP分为4个无关或远亲型家族(A-D),每个家族中的蛋白质结构和序列,一般来说,高度保守。超过一半的duplodnavirus编码A家族的DNAP,B或C。我们先前证明了Crassvirales顺序中的多对密切相关的病毒编码不同家族的DNAPs。
    方法:可能发生DNAP交换的噬菌体组被鉴定为在包括具有不同家族DNAP的噬菌体的有尾噬菌体的综合进化树中具有确定深度的子树。DNAP交换通过对大型末端酶亚基的系统发育树进行的约束树分析进行验证,使用Mauve比对编码交换的DNAP的噬菌体基因组。使用AlphaFold2预测发现的不寻常DNAP的结构。
    结果:我们在Caudoviricetes类中确定了另外四组有尾噬菌体,其中DNAP显然多次交换,在家庭A和B之间都发生替换,或者A和C,或在同一家族内不同的亚家族之间。DNAP交换总是发生“原位”,没有改变周围基因的组织。在一些情况下,DNAP基因是密切相关的噬菌体基因组之间唯一的实质性分歧的区域,而在其他人中,这种交换显然涉及编码其他参与噬菌体基因组复制的蛋白质的邻近基因。此外,我们发现了两个以前未被发现的,在某些噬菌体基因组中编码的家族ADNAP的高度不同组以及与基因组复制有关的主要DNAP。
    结论:在不同的尾噬菌体家族的进化过程中,在许多独立的情况下,DNAP基因被编码不同家族的DNAP的基因取代,在某些情况下,导致非常密切相关的噬菌体编码无关的DNAP。DNAP交换可能是由选择避免宿主抗噬菌体机制驱动的,该机制靶向尚待鉴定的噬菌体DNAP。和/或通过选择复制子不兼容。
    BACKGROUND: Viruses with double-stranded (ds) DNA genomes in the realm Duplodnaviria share a conserved structural gene module but show a broad range of variation in their repertoires of DNA replication proteins. Some of the duplodnaviruses encode (nearly) complete replication systems whereas others lack (almost) all genes required for replication, relying on the host replication machinery. DNA polymerases (DNAPs) comprise the centerpiece of the DNA replication apparatus. The replicative DNAPs are classified into 4 unrelated or distantly related families (A-D), with the protein structures and sequences within each family being, generally, highly conserved. More than half of the duplodnaviruses encode a DNAP of family A, B or C. We showed previously that multiple pairs of closely related viruses in the order Crassvirales encode DNAPs of different families.
    METHODS: Groups of phages in which DNAP swapping likely occurred were identified as subtrees of a defined depth in a comprehensive evolutionary tree of tailed bacteriophages that included phages with DNAPs of different families. The DNAP swaps were validated by constrained tree analysis that was performed on phylogenetic tree of large terminase subunits, and the phage genomes encoding swapped DNAPs were aligned using Mauve. The structures of the discovered unusual DNAPs were predicted using AlphaFold2.
    RESULTS: We identified four additional groups of tailed phages in the class Caudoviricetes in which the DNAPs apparently were swapped on multiple occasions, with replacements occurring both between families A and B, or A and C, or between distinct subfamilies within the same family. The DNAP swapping always occurs \"in situ\", without changes in the organization of the surrounding genes. In several cases, the DNAP gene is the only region of substantial divergence between closely related phage genomes, whereas in others, the swap apparently involved neighboring genes encoding other proteins involved in phage genome replication. In addition, we identified two previously undetected, highly divergent groups of family A DNAPs that are encoded in some phage genomes along with the main DNAP implicated in genome replication.
    CONCLUSIONS: Replacement of the DNAP gene by one encoding a DNAP of a different family occurred on many independent occasions during the evolution of different families of tailed phages, in some cases, resulting in very closely related phages encoding unrelated DNAPs. DNAP swapping was likely driven by selection for avoidance of host antiphage mechanisms targeting the phage DNAP that remain to be identified, and/or by selection against replicon incompatibility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    无碱基位点是通过碱基切除修复修复的DNA损伤。单链DNA(ssDNA)中未修复的无碱基位点的切割可导致DNA复制过程中的染色体断裂。如何防止脱碱基DNA的破裂仍然知之甚少。这里,使用低温电子显微镜(cryo-EM),非洲爪狼卵提取物,和人类细胞,我们表明RAD51核丝特异性识别和保护脱碱基位点,增加RAD51与DNA的结合率。在没有BRCA2或RAD51的情况下,由于DNA碱基甲基化,无碱基位点积累,氧化,和脱氨,诱导无碱基ssDNA缺口,使复制的DNA纤维对APE1敏感。组装在无碱基DNA上的RAD51防止MRE11-RAD50复合物的无碱基位点切割,抑制由过量的无碱基位点或POLθ聚合酶抑制触发的复制叉断裂。我们的研究强调了BRCA2和RAD51在保护DNA模板中因碱基改变而产生的未修复的无碱基位点方面的关键作用,确保基因组稳定性。
    Abasic sites are DNA lesions repaired by base excision repair. Cleavage of unrepaired abasic sites in single-stranded DNA (ssDNA) can lead to chromosomal breakage during DNA replication. How rupture of abasic DNA is prevented remains poorly understood. Here, using cryoelectron microscopy (cryo-EM), Xenopus laevis egg extracts, and human cells, we show that RAD51 nucleofilaments specifically recognize and protect abasic sites, which increase RAD51 association rate to DNA. In the absence of BRCA2 or RAD51, abasic sites accumulate as a result of DNA base methylation, oxidation, and deamination, inducing abasic ssDNA gaps that make replicating DNA fibers sensitive to APE1. RAD51 assembled on abasic DNA prevents abasic site cleavage by the MRE11-RAD50 complex, suppressing replication fork breakage triggered by an excess of abasic sites or POLθ polymerase inhibition. Our study highlights the critical role of BRCA2 and RAD51 in safeguarding against unrepaired abasic sites in DNA templates stemming from base alterations, ensuring genomic stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已产生具有显著性能的嵌合DNA聚合酶用于广泛的应用,包括DNA扩增和分子诊断。这种合理的设计方法旨在通过将来自不同蛋白质的氨基酸序列与单个DNA聚合酶融合以产生嵌合DNA聚合酶来改善特定的酶特性或引入新的功能。几种策略被证明是有效的,包括在聚合酶之间交换同源结构域以结合来自不同物种的益处,掺入外切核酸酶活性的额外结构域或增强与DNA的结合能力,并将功能蛋白与特定的蛋白质结构模式整合在一起,以提高热稳定性和对抑制剂的耐受性,正如过去十年中的许多案例所显示的那样。开发具有所需性状的嵌合DNA聚合酶的常规方案涉及设计-构建-测试-学习(DBTL)循环。该程序以选择亲本聚合酶开始,然后是相关领域的识别,并设计融合策略。重组表达和纯化嵌合聚合酶后,对其绩效进行评估。分析这些评估的结果以进一步增强和优化聚合酶的功能。这次审查,以微生物为中心,简要概述了嵌合DNA聚合酶分类的典型实例,并提出了他们创作的一般方法。关键点:•嵌合DNA聚合酶通过合理的设计方法产生。•策略包括结构域交换和添加蛋白质,域,和图案。•嵌合DNA聚合酶表现出改善的酶特性或新功能。
    Chimeric DNA polymerase with notable performance has been generated for wide applications including DNA amplification and molecular diagnostics. This rational design method aims to improve specific enzymatic characteristics or introduce novel functions by fusing amino acid sequences from different proteins with a single DNA polymerase to create a chimeric DNA polymerase. Several strategies prove to be efficient, including swapping homologous domains between polymerases to combine benefits from different species, incorporating additional domains for exonuclease activity or enhanced binding ability to DNA, and integrating functional protein along with specific protein structural pattern to improve thermal stability and tolerance to inhibitors, as many cases in the past decade shown. The conventional protocol to develop a chimeric DNA polymerase with desired traits involves a Design-Build-Test-Learn (DBTL) cycle. This procedure initiates with the selection of a parent polymerase, followed by the identification of relevant domains and devising a strategy for fusion. After recombinant expression and purification of chimeric polymerase, its performance is evaluated. The outcomes of these evaluations are analyzed for further enhancing and optimizing the functionality of the polymerase. This review, centered on microorganisms, briefly outlines typical instances of chimeric DNA polymerases categorized, and presents a general methodology for their creation. KEY POINTS: • Chimeric DNA polymerase is generated by rational design method. • Strategies include domain exchange and addition of proteins, domains, and motifs. • Chimeric DNA polymerase exhibits improved enzymatic properties or novel functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA聚合酶theta(Polθ)是一种DNA解旋酶-聚合酶蛋白,可促进DNA修复,并且对同源定向修复(HDR)因子具有合成致死性。因此,Pole是HDR缺陷癌症中一种有前途的精准肿瘤药物靶标。这里,我们使用cryo-EM表征了Polθ解旋酶(Polθ-hel)小分子抑制剂(AB25583)的结合和作用机制。AB25583对Pole-hel,选择性杀死BRCA1/2缺陷细胞,并在携带致病性BRCA1/2突变的癌细胞中与奥拉帕尼协同作用。Cryo-EM在3.0-3.2µ上主要发现二聚体Polθ-hel:AB25583复杂结构。这些结构揭示了解旋酶中央通道深处的结合袋,这强调了AB25583的高特异性和效力。低温EM结构与生化数据的结合表明,AB25583通过变构机制抑制了Polθ-hel解旋酶的ATPase活性。这些关于AB25583抑制的详细结构数据和见解为加速HDR缺陷型癌症中靶向Pole-hel的药物开发铺平了道路。
    DNA polymerase theta (Polθ) is a DNA helicase-polymerase protein that facilitates DNA repair and is synthetic lethal with homology-directed repair (HDR) factors. Thus, Polθ is a promising precision oncology drug-target in HDR-deficient cancers. Here, we characterize the binding and mechanism of action of a Polθ helicase (Polθ-hel) small-molecule inhibitor (AB25583) using cryo-EM. AB25583 exhibits 6 nM IC50 against Polθ-hel, selectively kills BRCA1/2-deficient cells, and acts synergistically with olaparib in cancer cells harboring pathogenic BRCA1/2 mutations. Cryo-EM uncovers predominantly dimeric Polθ-hel:AB25583 complex structures at 3.0-3.2 Å. The structures reveal a binding-pocket deep inside the helicase central-channel, which underscores the high specificity and potency of AB25583. The cryo-EM structures in conjunction with biochemical data indicate that AB25583 inhibits the ATPase activity of Polθ-hel helicase via an allosteric mechanism. These detailed structural data and insights about AB25583 inhibition pave the way for accelerating drug development targeting Polθ-hel in HDR-deficient cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    G-四链体(G4s)在整个基因组中形成并影响重要的细胞过程。它们的失调可以挑战DNA复制叉进展并威胁基因组稳定性。这里,我们证明了双链DNA(dsDNA)转位酶解旋酶样转录因子(HLTF)在响应G4s中的意想不到的作用。我们证明了HLTF,在人类基因组中富含G4s,可以在体外直接展开G4s,并使用这种ATP依赖性转位酶功能来抑制G4在整个细胞周期中的积累。此外,MSH2(结合G4s的MutS异源二聚体的组成部分)和HLTF协同作用以抑制G4积累,限制端粒的替代延长,并促进对G4稳定药物的耐药性。在离散但互补的角色中,当G4s通过抑制引发酶-聚合酶(PrimPol)依赖性的重新引发而稳定时,HLTF会抑制DNA合成。一起,HLTF在G4反应中的独特作用可防止DNA损伤和潜在的诱变复制,从而保护基因组稳定性.
    G-quadruplexes (G4s) form throughout the genome and influence important cellular processes. Their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected role for the double-stranded DNA (dsDNA) translocase helicase-like transcription factor (HLTF) in responding to G4s. We show that HLTF, which is enriched at G4s in the human genome, can directly unfold G4s in vitro and uses this ATP-dependent translocase function to suppress G4 accumulation throughout the cell cycle. Additionally, MSH2 (a component of MutS heterodimers that bind G4s) and HLTF act synergistically to suppress G4 accumulation, restrict alternative lengthening of telomeres, and promote resistance to G4-stabilizing drugs. In a discrete but complementary role, HLTF restrains DNA synthesis when G4s are stabilized by suppressing primase-polymerase (PrimPol)-dependent repriming. Together, the distinct roles of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在滞后链染色质复制过程中,多个冈崎片段(OF)需要加工和核小体组装,但连接这些过程的机制仍不清楚.这里,使用透射电子显微镜和DNA连接酶Cdc9的快速降解,我们观察到在滞后链上积累的皮瓣结构,受Polδ的链置换活性和Fen1的核酸酶消化控制。相邻襟翼结构之间的距离表现出规则的模式,指示成熟的长度。虽然fen1Δ或通过聚合酶δ(Polδ;pol3exec-)增强的链置换活性对皮瓣间距离的影响最小,影响复制偶联核小体装配的突变体,如cac1Δ和mcm2-3A,显著改变它。DNAPolδ亚基Pol32的缺失,显著增加了这个距离。机械上,Pol32与组蛋白H3-H4结合,对于滞后链上的核小体组装至关重要。一起,我们认为Pol32在核小体组装和滞后链上OF的加工之间建立了联系。
    During lagging strand chromatin replication, multiple Okazaki fragments (OFs) require processing and nucleosome assembly, but the mechanisms linking these processes remain unclear. Here, using transmission electron microscopy and rapid degradation of DNA ligase Cdc9, we observed flap structures accumulated on lagging strands, controlled by both Pol δ\'s strand displacement activity and Fen1\'s nuclease digestion. The distance between neighboring flap structures exhibits a regular pattern, indicative of matured OF length. While fen1Δ or enhanced strand displacement activities by polymerase δ (Pol δ; pol3exo-) minimally affect inter-flap distance, mutants affecting replication-coupled nucleosome assembly, such as cac1Δ and mcm2-3A, do significantly alter it. Deletion of Pol32, a subunit of DNA Pol δ, significantly increases this distance. Mechanistically, Pol32 binds to histone H3-H4 and is critical for nucleosome assembly on the lagging strand. Together, we propose that Pol32 establishes a connection between nucleosome assembly and the processing of OFs on lagging strands.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:在暴露于EGFR抑制剂的结直肠癌(CRC)细胞中观察到的适应性诱变有助于耐药性和复发的发展。多项研究表明,在表现出适应性诱变方面,癌细胞和细菌之间存在平行关系。这种现象需要易错的跨损伤合成聚合酶(TLS聚合酶)的瞬时和协调升级,导致足以驱动抗性表型选择的幅度的诱变。
    方法:在本研究中,我们对CRC细胞内的调控框架进行了全面的泛转录组分析,目的是鉴定潜在的转录组模块,包括某些跨损伤聚合酶和控制它们的相关转录因子(TF)。我们的采样策略涉及从用西妥昔单抗治疗的肿瘤中收集转录组数据,EGFR抑制剂,未经治疗的CRC肿瘤,和结肠直肠来源的细胞系,导致不同的数据集。随后,我们使用加权相关网络分析识别了共调控模块,minKMEtosay阈值设置为0.5,以最小化假阳性模块识别,并将模块映射到STRING注释.此外,我们使用KBoost探索了影响这些模块的假定TFs,核PCA回归模型。
    结果:我们的分析未揭示西妥昔单抗治疗特异性的独特转录谱。此外,我们阐明了包含基因的共表达模块,例如,POLK,POLI,POLQ,REV1,POLN,和POLM。具体来说,POLK,POLI,和POLQ被分配给“蓝色”模块,其中还包括关键的DNA损伤反应酶,例如。BRCA1、BRCA2、MSH6和MSH2。为了描述这个模块的转录控制,我们调查了相关的TFs,突出突出的癌症相关TFs的作用,比如CENPA,HNF1A,E2F7
    结论:我们发现跨损伤聚合酶与DNA错配修复和细胞周期相关因子共同调节。我们没有,然而,确定了西妥昔单抗治疗特异性的任何网络,表明对EGFR抑制剂的反应与一般应激反应机制有关。
    BACKGROUND: Adaptive mutagenesis observed in colorectal cancer (CRC) cells upon exposure to EGFR inhibitors contributes to the development of resistance and recurrence. Multiple investigations have indicated a parallel between cancer cells and bacteria in terms of exhibiting adaptive mutagenesis. This phenomenon entails a transient and coordinated escalation of error-prone translesion synthesis polymerases (TLS polymerases), resulting in mutagenesis of a magnitude sufficient to drive the selection of resistant phenotypes.
    METHODS: In this study, we conducted a comprehensive pan-transcriptome analysis of the regulatory framework within CRC cells, with the objective of identifying potential transcriptome modules encompassing certain translesion polymerases and the associated transcription factors (TFs) that govern them. Our sampling strategy involved the collection of transcriptomic data from tumors treated with cetuximab, an EGFR inhibitor, untreated CRC tumors, and colorectal-derived cell lines, resulting in a diverse dataset. Subsequently, we identified co-regulated modules using weighted correlation network analysis with a minKMEtostay threshold set at 0.5 to minimize false-positive module identifications and mapped the modules to STRING annotations. Furthermore, we explored the putative TFs influencing these modules using KBoost, a kernel PCA regression model.
    RESULTS: Our analysis did not reveal a distinct transcriptional profile specific to cetuximab treatment. Moreover, we elucidated co-expression modules housing genes, for example, POLK, POLI, POLQ, REV1, POLN, and POLM. Specifically, POLK, POLI, and POLQ were assigned to the \"blue\" module, which also encompassed critical DNA damage response enzymes, for example. BRCA1, BRCA2, MSH6, and MSH2. To delineate the transcriptional control of this module, we investigated associated TFs, highlighting the roles of prominent cancer-associated TFs, such as CENPA, HNF1A, and E2F7.
    CONCLUSIONS: We found that translesion polymerases are co-regulated with DNA mismatch repair and cell cycle-associated factors. We did not, however, identified any networks specific to cetuximab treatment indicating that the response to EGFR inhibitors relates to a general stress response mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物体的基因组DNA必须在每个细胞周期中准确复制。DNA合成由DNA聚合酶催化,在5'到3'方向延伸核苷酸聚合物。这种固有的方向性需要向前合成一条链(前导),而另一个是不连续地(滞后)向后合成的,以将合成与双链DNA的展开耦合。真核细胞拥有许多不同的聚合酶,协调复制DNA,三种主要的复制聚合酶是Polα,Polδ和Polε。在酵母和人类细胞中进行的研究利用将分子特征整合到新生DNA中的突变聚合酶,暗示Polε在前导链合成中,而Polα和Polδ在滞后链复制中。最近的结构见解揭示了这些酶在核心解旋酶周围的空间组织如何促进它们的链特异性作用。然而,复制过程中的各种挑战性情况需要这些酶的使用灵活性,例如在复制启动或遇到复制阻断加合物期间。这篇综述总结了复制聚合酶在批量DNA复制中的作用,并探讨了它们在完成基因组复制方面的灵活和动态部署。我们还研究了聚合酶使用模式如何通过揭示复制叉的方向性来识别复制起始和终止区域,从而为我们对全局复制动态的理解提供信息。
    An organism\'s genomic DNA must be accurately duplicated during each cell cycle. DNA synthesis is catalysed by DNA polymerase enzymes, which extend nucleotide polymers in a 5\' to 3\' direction. This inherent directionality necessitates that one strand is synthesised forwards (leading), while the other is synthesised backwards discontinuously (lagging) to couple synthesis to the unwinding of duplex DNA. Eukaryotic cells possess many diverse polymerases that coordinate to replicate DNA, with the three main replicative polymerases being Pol α, Pol δ and Pol ε. Studies conducted in yeasts and human cells utilising mutant polymerases that incorporate molecular signatures into nascent DNA implicate Pol ε in leading strand synthesis and Pol α and Pol δ in lagging strand replication. Recent structural insights have revealed how the spatial organization of these enzymes around the core helicase facilitates their strand-specific roles. However, various challenging situations during replication require flexibility in the usage of these enzymes, such as during replication initiation or encounters with replication-blocking adducts. This review summarises the roles of the replicative polymerases in bulk DNA replication and explores their flexible and dynamic deployment to complete genome replication. We also examine how polymerase usage patterns can inform our understanding of global replication dynamics by revealing replication fork directionality to identify regions of replication initiation and termination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号