Brain development

大脑发育
  • 文章类型: Journal Article
    少突胶质前体细胞(OPCs)在发育中的中枢神经系统中使用血管作为物理支架广泛迁移。尽管OPCs与脉管系统的关联对于迁移至关重要,OPCs增殖和少突胶质细胞发育的重要调控机制尚不清楚.这里,在大脑发育过程中,血管发育与OPCs反应之间存在相关性。干扰素基因(STING)的内皮刺激物的缺失通过抑制法尼基-二磷酸法尼基转移酶1(FDFT1)来破坏血管生成,从而减少胆固醇的合成。此外,内皮细胞代谢稳态的扰动增加了白细胞介素17D的产生,白细胞介素17D介导了从内皮细胞到OPCs的信号转导,抑制少突胶质细胞发育和髓鞘形成,并导致成年小鼠行为异常。总的来说,这些发现表明内皮STING如何维持代谢稳态,并有助于发育中的新皮质中的少突胶质细胞前体细胞反应。
    Oligodendrocyte precursor cells (OPCs) migrate extensively using blood vessels as physical scaffolds in the developing central nervous system. Although the association of OPCs with the vasculature is critical for migration, the regulatory mechanisms important for OPCs proliferative and oligodendrocyte development are unknown. Here, a correlation is demonstrated between the developing vasculature and OPCs response during brain development. Deletion of endothelial stimulator of interferon genes (STING) disrupts angiogenesis by inhibiting farnesyl-diphosphate farnesyltransferase 1 (FDFT1) and thereby reducing cholesterol synthesis. Furthermore, the perturbation of metabolic homeostasis in endothelial cells increases interleukin 17D production which mediates the signal transduction from endothelial cells to OPCs, which inhibits oligodendrocyte development and myelination and causes behavioral abnormalities in adult mice. Overall, these findings indicate how the endothelial STING maintains metabolic homeostasis and contributes to oligodendrocyte precursor cells response in the developing neocortex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    假设大脑网络在发育过程中会发生重大变化,特别是在婴儿期。因此,这项研究的目的是根据电生理(EEG)功能连接(FC)评估生命第一年的大脑成熟。全脑FC指标(即,幅度平方相干性,相位滞后指数,和从图论中导出的参数)被提取,对于多个频带,来自146名通常在6(T6)和12(T12)月龄发育的婴儿的基线EEG数据。将时间点和性别视为固定效应,使用广义线性混合模型来测试计算指标的显着差异。进行相关分析,以确定FC和受试者的认知和语言水平之间的潜在关系,在24(T24)月龄时使用Bayley-III量表进行评估。获得的结果突显了FC的增加,对于所有分析的频带,在T12相对于T6。相关分析提供了T12时FC指标与认知之间关系的证据。尽管有一些限制,我们的研究代表了在考虑功能成熟和认知改善之间的对应关系的情况下评估生命第一年大脑网络进化的首次尝试之一.
    Brain networks are hypothesized to undergo significant changes over development, particularly during infancy. Thus, the aim of this study is to evaluate brain maturation in the first year of life in terms of electrophysiological (EEG) functional connectivity (FC). Whole-brain FC metrics (i.e., magnitude-squared coherence, phase lag index, and parameters derived from graph theory) were extracted, for multiple frequency bands, from baseline EEG data recorded from 146 typically developing infants at 6 (T6) and 12 (T12) months of age. Generalized linear mixed models were used to test for significant differences in the computed metrics considering time point and sex as fixed effects. Correlational analyses were performed to ascertain the potential relationship between FC and subjects\' cognitive and language level, assessed with the Bayley-III scale at 24 (T24) months of age. The results obtained highlighted an increased FC, for all the analyzed frequency bands, at T12 with respect to T6. Correlational analyses yielded evidence of the relationship between FC metrics at T12 and cognition. Despite some limitations, our study represents one of the first attempts to evaluate brain network evolution during the first year of life while accounting for correspondence between functional maturation and cognitive improvement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基因共表达网络可能编码迄今为止尚未充分认识到的成人神经胶质瘤的脆弱性。通过确定EGFR(EM)或PDGFRA(PM)周围的进化保守基因共表达模块,我们最近提出了EM/PM分类方案,将IDH-野生型胶质母细胞瘤(GBM)分配到神经干细胞区室中的EM亚型中,IDH突变型星形细胞瘤和少突胶质细胞瘤进入PM亚型的早期少突胶质细胞谱系。这里,我们报道了EM/PM亚型特异性基因共表达网络的鉴定以及hub基因多嘧啶束结合蛋白1(PTBP1)作为IDH野生型GBM中不依赖基因组改变的易损性的特征.由EM/PM分类方案监督,我们应用加权基因共表达网络分析来鉴定亚型特异性全局基因共表达模块.这些基因共表达模块的特征在于它们的临床相关性,脑发育过程中的细胞起源和保守表达模式。使用慢病毒载体介导的组成型或诱导型敲除,我们表征了PTBP1对IDH野生型GBM细胞存活的影响,PTBP1抑制剪接模式的分析和剪接靶神经元特异性CDC42(CDC42-N)同工型的过表达。成人神经胶质瘤的转录组可以被稳健地分配到4个大的基因共表达模块中,这些模块在预后上是相关的,并且源自EM/PM亚型的恶性细胞或肿瘤微环境。EM亚型与参与前mRNA剪接的恶性细胞固有基因模块相关,DNA复制和损伤反应,和染色体分离,以及主要参与细胞外基质组织和浸润免疫细胞的微环境衍生基因模块。PM亚型与两个主要参与转录调控和mRNA翻译的恶性细胞固有基因模块相关。分别。这些基因模块的表达水平是独立的预后因素,恶性细胞固有基因模块在脑发育过程中是保守的。专注于EM子类型,我们确定PTBP1是恶性细胞固有基因模块最重要的中心.PTBP1在大多数神经胶质瘤基因组中没有改变。PTBP1抑制CDC42-N的保守剪接。PTBP1敲低或CDC42-N过表达破坏肌动蛋白细胞骨架动力学,引起活性氧积累和细胞凋亡。PTBP1介导的CDC42-N剪接的抑制代表了一个潜在的基因组改变无关,IDH野生型GBM中发育保守的脆弱性。
    Gene co-expression networks may encode hitherto inadequately recognized vulnerabilities for adult gliomas. By identifying evolutionally conserved gene co-expression modules around EGFR (EM) or PDGFRA (PM), we recently proposed an EM/PM classification scheme, which assigns IDH-wildtype glioblastomas (GBM) into the EM subtype committed in neural stem cell compartment, IDH-mutant astrocytomas and oligodendrogliomas into the PM subtype committed in early oligodendrocyte lineage. Here, we report the identification of EM/PM subtype-specific gene co-expression networks and the characterization of hub gene polypyrimidine tract-binding protein 1 (PTBP1) as a genomic alteration-independent vulnerability in IDH-wildtype GBM. Supervised by the EM/PM classification scheme, we applied weighted gene co-expression network analysis to identify subtype-specific global gene co-expression modules. These gene co-expression modules were characterized for their clinical relevance, cellular origin and conserved expression pattern during brain development. Using lentiviral vector-mediated constitutive or inducible knockdown, we characterized the effects of PTBP1 on the survival of IDH-wildtype GBM cells, which was complemented with the analysis of PTBP1-depedent splicing pattern and overexpression of splicing target neuron-specific CDC42 (CDC42-N) isoform.  Transcriptomes of adult gliomas can be robustly assigned into 4 large gene co-expression modules that are prognostically relevant and are derived from either malignant cells of the EM/PM subtypes or tumor microenvironment. The EM subtype is associated with a malignant cell-intrinsic gene module involved in pre-mRNA splicing, DNA replication and damage response, and chromosome segregation, and a microenvironment-derived gene module predominantly involved in extracellular matrix organization and infiltrating immune cells. The PM subtype is associated with two malignant cell-intrinsic gene modules predominantly involved in transcriptional regulation and mRNA translation, respectively. Expression levels of these gene modules are independent prognostic factors and malignant cell-intrinsic gene modules are conserved during brain development. Focusing on the EM subtype, we identified PTBP1 as the most significant hub for the malignant cell-intrinsic gene module. PTBP1 is not altered in most glioma genomes. PTBP1 represses the conserved splicing of CDC42-N. PTBP1 knockdown or CDC42-N overexpression disrupts actin cytoskeleton dynamics, causing accumulation of reactive oxygen species and cell apoptosis. PTBP1-mediated repression of CDC42-N splicing represents a potential genomic alteration-independent, developmentally conserved vulnerability in IDH-wildtype GBM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对网络组件之间的动态交互进行建模对于揭示复杂网络的演化机制至关重要。最近,时空图学习方法在表征节点间关系(INR)的动态变化方面取得了值得注意的成果。然而,挑战依然存在:INR的空间邻域开发不足,INRs动态变化中的时空依赖性被忽视,忽略了历史状态和地方信息的影响。此外,该模型的可解释性一直没有得到充分研究。为了解决这些问题,我们提出了一个可解释的时空图进化学习(ESTGEL)模型来对INR的动态演化进行建模。具体来说,提出了一种边缘注意模块,以在多级上利用INR的空间邻域,即,通过分解初始节点关系图得出的嵌套子图的层次结构。随后,提出了一个动态关系学习模块来捕获INR的时空依赖性。然后将INR用作相邻信息以改善节点表示,从而全面描绘了网络的动态演变。最后,该方法得到了大脑发育研究的真实数据的验证。动态脑网络分析的实验结果表明,在整个开发过程中,脑功能网络从分散过渡到更收敛和模块化的结构。在与包括情绪控制在内的功能相关的动态功能连接(dFC)中观察到显着变化,决策,和语言处理。
    Modeling dynamic interactions among network components is crucial to uncovering the evolution mechanisms of complex networks. Recently, spatio-temporal graph learning methods have achieved noteworthy results in characterizing the dynamic changes of inter-node relations (INRs). However, challenges remain: The spatial neighborhood of an INR is underexploited, and the spatio-temporal dependencies in INRs\' dynamic changes are overlooked, ignoring the influence of historical states and local information. In addition, the model\'s explainability has been understudied. To address these issues, we propose an explainable spatio-temporal graph evolution learning (ESTGEL) model to model the dynamic evolution of INRs. Specifically, an edge attention module is proposed to utilize the spatial neighborhood of an INR at multi-level, i.e., a hierarchy of nested subgraphs derived from decomposing the initial node-relation graph. Subsequently, a dynamic relation learning module is proposed to capture the spatio-temporal dependencies of INRs. The INRs are then used as adjacent information to improve the node representation, resulting in comprehensive delineation of dynamic evolution of the network. Finally, the approach is validated with real data on brain development study. Experimental results on dynamic brain networks analysis reveal that brain functional networks transition from dispersed to more convergent and modular structures throughout development. Significant changes are observed in the dynamic functional connectivity (dFC) associated with functions including emotional control, decision-making, and language processing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人类大脑在生命的最初几年经历了快速发育。从子宫开始,各种各样的生物,社会,环境因素会对大脑结构和功能产生持久影响。为了了解产前和早期生活经历如何改变神经发育轨迹和塑造健康结果,几个NIH研究所,中心,和办公室合作支持和启动健康大脑和儿童发育(HBCD)研究。六溴环十二烷研究是一项多地点前瞻性纵向队列研究,它将检查人类的大脑,认知,行为,社会,和情感发展开始于出生前和计划到幼儿时期。受正在进行的青少年大脑认知发展SM研究(ABCD研究®)的成功影响,并与NIH合作帮助终止成瘾长期®倡议,或NIHHEALInitiative®,六溴环十二烷研究旨在建立一个由7000多名怀孕参与者组成的多样化队列,以了解早期生活经历,包括产前暴露于成瘾物质和不利的社会环境,以及它们与个体基因的相互作用,会影响神经发育轨迹和结果。从六溴环十二烷研究中获得的知识将有助于确定早期干预的目标,并为促进韧性和减轻不良儿童经历和环境对神经发育影响的政策提供信息。
    The human brain undergoes rapid development during the first years of life. Beginning in utero, a wide array of biological, social, and environmental factors can have lasting impacts on brain structure and function. To understand how prenatal and early life experiences alter neurodevelopmental trajectories and shape health outcomes, several NIH Institutes, Centers, and Offices collaborated to support and launch the HEALthy Brain and Child Development (HBCD) Study. The HBCD Study is a multi-site prospective longitudinal cohort study, that will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. Influenced by the success of the ongoing Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®) and in partnership with the NIH Helping to End Addiction Long-term® Initiative, or NIH HEAL Initiative®, the HBCD Study aims to establish a diverse cohort of over 7000 pregnant participants to understand how early life experiences, including prenatal exposure to addictive substances and adverse social environments as well as their interactions with an individual\'s genes, can affect neurodevelopmental trajectories and outcomes. Knowledge gained from the HBCD Study will help identify targets for early interventions and inform policies that promote resilience and mitigate the neurodevelopmental effects of adverse childhood experiences and environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    催产素影响社会认同,互动,和成年人的行为。尽管关于催产素在感觉系统中的作用的数据越来越多,它对早期嗅觉系统发育的影响仍然知之甚少。本研究旨在研究催产素对嗅觉脑区GABA能系统选定参数的发育影响。我们发现在雄性和雌性大鼠发育的早期阶段,嗅球中GABA能标记物和支架蛋白的表达显着增加,无论产后第2天和第3天给予催产素治疗(P2和P3,5µg/只)。催产素给药可显着降低雄性大鼠支架蛋白Gephyrin的表达,并导致P5,P7和P9雄性大鼠梨状皮层中GABA能突触点的数量显着增加。我们的数据表明,催产素与GABA能系统有关的发育作用可能代表了一种调节嗅觉大脑区域可塑性和成熟的机制。
    Oxytocin affects social recognition, interactions, and behavior in adults. Despite growing data on the role of oxytocin in the sensory systems, its effects on early olfactory system development remain poorly understood. The present study aimed to investigate the developmental impact of oxytocin on selected parameters of the GABAergic system in olfactory brain regions. We found a significant increase in the expression of GABAergic markers and scaffolding proteins in the olfactory bulb during the early stages of development in both male and female rats, regardless of oxytocin treatment administered on postnatal days 2 and 3 (P2 and P3, 5 µg/pup). Oxytocin administration markedly reduced the expression of the scaffolding protein Gephyrin in male rats and it led to a significant increase in the number of GABAergic synaptic puncta in the piriform cortex of male rats at P5, P7, and P9. Our data suggest that the developmental action of oxytocin in relation to the GABAergic system may represent a mechanism by which the plasticity and maturation of olfactory brain regions are regulated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:产前蛋白质营养不良会在发育中的大脑中产生解剖和功能变化,尽管产后立即进行营养康复,但这种变化仍然存在。产前营养不良动物的大脑网络显示,在注意力任务期间,前额叶区域的激活减少,海马区域的激活增加[1]。尽管已在海马子区CA1中记录了细胞数量的减少,但对前额叶或海马旁皮质中神经元数量的变化一无所知。方法:在本研究中,我们使用无偏倚的体视学研究了产前蛋白质营养不良对内侧前额叶皮质和构成更大功能网络的海马旁区域皮质神经元数量的影响.结果:结果表明,产前蛋白质营养不良不会引起成年大鼠内侧前额叶皮质神经元群的变化,表明注意力任务期间功能激活的减少不是由于神经元数量的减少。结果还表明,产前蛋白质营养不良与特定海马旁亚区域的神经元数量减少有关:内侧内嗅皮层和前丘。讨论:受影响的区域以及CA1包括紧密互连的电路,这表明产前营养不良赋予特定海马回路的脆弱性。这些发现与产前蛋白质营养不良会导致结构和功能网络重组的观点一致,这可能是观察到的注意过程和能力改变的基础。
    UNASSIGNED: Prenatal protein malnutrition produces anatomical and functional changes in the developing brain that persist despite immediate postnatal nutritional rehabilitation. Brain networks of prenatally malnourished animals show diminished activation of prefrontal areas and an increased activation of hippocampal regions during an attentional task [1]. While a reduction in cell number has been documented in hippocampal subfield CA1, nothing is known about changes in neuron numbers in the prefrontal or parahippocampal cortices.
    UNASSIGNED: In the present study, we used unbiased stereology to investigate the effect of prenatal protein malnutrition on the neuron numbers in the medial prefrontal cortex and the cortices of the parahippocampal region that comprise the larger functional network.
    UNASSIGNED: Results show that prenatal protein malnutrition does not cause changes in the neuronal population in the medial prefrontal cortex of adult rats, indicating that the decrease in functional activation during attentional tasks is not due to a reduction in the number of neurons. Results also show that prenatal protein malnutrition is associated with a reduction in neuron numbers in specific parahippocampal subregions: the medial entorhinal cortex and presubiculum.
    UNASSIGNED: The affected regions along with CA1 comprise a tightly interconnected circuit, suggesting that prenatal malnutrition confers a vulnerability to specific hippocampal circuits. These findings are consistent with the idea that prenatal protein malnutrition produces a reorganization of structural and functional networks, which may underlie observed alterations in attentional processes and capabilities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    异质核核糖核蛋白(hnRNP)构成了一个多功能RNA结合蛋白家族,能够将核前mRNA加工成成熟的mRNA并以多种方式调节基因表达。它们在哺乳动物中包含至少20种不同的成员,从A(HNRNPA1)命名为U(HNRNPU)。这些蛋白质中的许多是剪接体复合物的组分,并且可以以组织特异性方式调节可变剪接。值得注意的是,虽然编码hnRNP的基因表现出普遍存在的表达,越来越多的证据将这些蛋白质与各种神经发育和神经退行性疾病联系起来,比如智力残疾,癫痫,小头畸形,肌萎缩侧索硬化,或者痴呆症,突出它们在中枢神经系统中的关键作用。这篇综述探讨了hnRNPs家族的进化,突出了这个家庭中许多新成员的出现,并阐明它们对大脑发育的影响。
    Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小胶质细胞,存在于中枢神经系统(CNS)中的内在神经免疫细胞,对大脑发育产生重要影响,稳态,和功能,涵盖衰老和病理状态期间的关键作用。在理解大脑可塑性和功能方面的最新进展突出了男性和女性大脑之间的明显差异,特别是在神经发生中,神经元髓鞘形成,轴突成束,和突触发生。然而,小胶质细胞对性别特异性脑细胞可塑性的精确影响,雕刻不同的神经网络架构和电路,在很大程度上仍未探索。本文旨在阐明目前对小胶质细胞参与大脑发育的理解,可塑性,和功能,特别强调大脑性别多态性中的小胶质细胞信号。开始概述中枢神经系统中的小胶质细胞及其相关的信号级联,随后,我们探讨了有关小胶质细胞在性别依赖性大脑发育可塑性中的分子信号传导的最新启示,功能,和疾病。值得注意的是,C-X3-C基序趋化因子受体1(CX3CR1),在骨髓细胞2(TREM2)上表达的触发受体,钙(Ca2+),载脂蛋白E(APOE)作为分子候选物出现,显着促进性别依赖性大脑发育和可塑性。总之,我们致力于围绕小胶质细胞在发育和衰老大脑的功能多样性中的关键作用的新兴调查,考虑它们对神经退行性疾病中按性别定制的治疗策略的潜在影响。
    Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia\'s pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    甲状腺激素是几乎所有组织所必需的生理过程中的关键调节剂,在大脑发育和维护中具有非常重要的作用。这些激素调节基本的神经发育事件,包括神经元迁移,突触发生,和髓鞘形成。此外,甲状腺激素对于维持成年后的大脑稳态和认知功能至关重要。本章旨在全面了解甲状腺激素的生物合成及其在脑生理学中的复杂作用。这里,我们描述了甲状腺激素生物合成的潜在机制,它们对大脑发育和持续维护的各个方面的影响,以及大脑中对这些激素有反应的蛋白质。本章旨在扩大我们对大脑中甲状腺激素作用的理解,揭示神经发育和神经退行性疾病的潜在治疗靶点。
    Thyroid hormones are critical modulators in the physiological processes necessary to virtually all tissues, with exceptionally fundamental roles in brain development and maintenance. These hormones regulate essential neurodevelopment events, including neuronal migration, synaptogenesis, and myelination. Additionally, thyroid hormones are crucial for maintaining brain homeostasis and cognitive function in adulthood. This chapter aims to offer a comprehensive understanding of thyroid hormone biosynthesis and its intricate role in brain physiology. Here, we described the mechanisms underlying the biosynthesis of thyroid hormones, their influence on various aspects of brain development and ongoing maintenance, and the proteins in the brain that are responsive to these hormones. This chapter was geared towards broadening our understanding of thyroid hormone action in the brain, shedding light on potential therapeutic targets for neurodevelopmental and neurodegenerative disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号