AMPK, AMP-activated protein Kinase

AMPK,AMP 激活蛋白激酶
  • 文章类型: Journal Article
    肥胖是一个全球性的健康问题,因为它与许多退行性疾病相关,并且它可能导致早期衰老。衰老的各种标志,包括端粒损耗,表观遗传改变,改变蛋白质稳态,线粒体功能障碍,细胞衰老,干细胞疾病,和细胞间通讯,受肥胖的影响。因此,迫切需要安全有效的方法来预防肥胖和减轻过早衰老的发生。近年来,间歇性禁食(IF),在禁食和进食之间交替的饮食策略,已成为一种有前途的饮食策略,具有抵消与肥胖相关的衰老过程的潜力。本文探讨了IF影响肥胖相关早期衰老的分子和细胞机制。IF调节各种生理过程和器官系统,包括肝脏,大脑,肌肉,肠子,血,脂肪组织,内分泌系统,和心血管系统。此外,IF调节关键信号通路,如AMP激活的蛋白激酶(AMPK),sirtuins,磷脂酰肌醇3-激酶(PI3K)/Akt,哺乳动物雷帕霉素靶蛋白(mTOR),和叉头箱O(FOXO)。通过瞄准这些途径,IF具有减弱与肥胖相关的早期衰老相关的衰老表型的潜力。总的来说,IF为促进更健康的生活方式和减轻受肥胖影响的个体的过早衰老过程提供了有希望的途径。
    Obesity is a global health concern owing to its association with numerous degenerative diseases and the fact that it may lead to early aging. Various markers of aging, including telomere attrition, epigenetic alterations, altered protein homeostasis, mitochondrial dysfunction, cellular senescence, stem cell disorders, and intercellular communication, are influenced by obesity. Consequently, there is a critical need for safe and effective approaches to prevent obesity and mitigate the onset of premature aging. In recent years, intermittent fasting (IF), a dietary strategy that alternates between periods of fasting and feeding, has emerged as a promising dietary strategy that holds potential in counteracting the aging process associated with obesity. This article explores the molecular and cellular mechanisms through which IF affects obesity-related early aging. IF regulates various physiological processes and organ systems, including the liver, brain, muscles, intestines, blood, adipose tissues, endocrine system, and cardiovascular system. Moreover, IF modulates key signaling pathways such as AMP-activated protein kinase (AMPK), sirtuins, phosphatidylinositol 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR), and fork head box O (FOXO). By targeting these pathways, IF has the potential to attenuate aging phenotypes associated with obesity-related early aging. Overall, IF offers promising avenues for promoting healthier lifestyles and mitigating the premature aging process in individuals affected by obesity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    心血管疾病是世界上最常见的疾病,也是人类死亡原因中的第一位。发病率和死亡率逐年上升,但是没有有效的治疗方法。因此,应该开发新药来治疗心血管疾病。青霉(Michx。)Hulten(G.acuta)是中国重要的蒙药,对心血管健康具有保护作用。在这项研究中,采用液相色谱-质谱联用技术(LC-MS)结合网络药理学对主要活性成分进行筛选,证实bellidifolin是治疗缺血性心脏病的主要成分之一。然后,建立过氧化氢(H2O2)诱导的大鼠心肌(H9c2)细胞损伤模型,包括抗氧化酶活性和细胞凋亡的测定。转录组测序,qRT-PCR,并进行westernblot进一步验证bellidifolin的抗氧化应激机制。结果表明,bellidifolin预处理降低了细胞凋亡率和乳酸脱氢酶(LDH)水平,肌酸激酶(CK),丙氨酸转氨酶(ALT)。相反,它以剂量依赖的方式增加了超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)的含量,表明bellidifolin对心肌细胞损伤具有保护作用。bellidifolin通过激活PI3K-Akt信号通路和下调糖原合酶激酶-3β(GSK-3β)和p-Akt1/Akt1来最大程度地减少H2O2诱导的细胞损伤。因此,这项工作表明,山竹作为心血管疾病的可食用药用植物具有良好的发展前景。其bellidifolin成分是由氧化应激损伤引起的心血管疾病的潜在治疗剂。
    Cardiovascular disease is the most common disease in the world and the first among the causes of human death. Its morbidity and mortality increase annually, but no effective treatment is available. Therefore, new drugs should be developed to treat cardiovascular disease. Gentianella acuta (Michx.) Hulten (G. acuta) is an important Mongolian medicine in China and elicits protective effects on cardiovascular health. In this study, liquid chromatography-mass spectrometry (LC-MS) combined with network pharmacology was used to screen the main active ingredients and confirm that bellidifolin was one of the main components for the treatment of ischemic heart disease. Then, rat myocardial (H9c2) cells injury model induced by hydrogen peroxide (H2O2) in vitro was established to verify the effect of bellidifolin on oxidative stress stimulation, including determination of antioxidant enzyme activity and apoptosis. Transcriptome sequencing, qRT-PCR, and western blot were performed to further verify the antioxidant stress mechanism of bellidifolin. Results showed that bellidifolin pretreatment decreased the rate of apoptosis and the levels of lactate dehydrogenase (LDH), creatine kinase (CK), and alanine aminotransferase (ALT). Conversely, it increased the contents of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in a dose-dependent manner, indicating that bellidifolin caused a protective effect on cardiomyocyte injury. Bellidifolin minimized the H2O2-induced cell injury by activating the PI3K-Akt signal pathway and downregulating glycogen synthase kinase-3β (GSK-3β) and p-Akt1/Akt1. Therefore, this work revealed that G. acuta has a good development prospect as an edible medicinal plant in cardiovascular disease. Its bellidifolin component is a potential therapeutic agent for cardiovascular disease induced by oxidative stress damage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    瞬时受体电位(TRP)通道是钙(Ca2+)通透性通道的主要类型,这些相关的跨膜和细胞内TRP通道以前被认为主要与心血管和神经元系统的调节有关。如今,然而,越来越多的证据表明,这些TRP通道也负责肿瘤发生和发展,诱导肿瘤侵袭和转移。然而,TRP通道在恶性肿瘤中的总体潜在机制和可能的信号转导途径可能仍然难以捉摸.因此,在这次审查中,我们专注于TRP通道与肿瘤的显着特征之间的联系,例如多药耐药(MDR),转移,凋亡,扩散,逃避免疫监视,以及相关肿瘤微环境的改变。此外,我们还讨论了相关TRP通道在各种形式癌症中的表达和相关抑制剂的疗效。还介绍了各种作用机制的抗癌药物的化学敏感性和潜在的临床应用。此外,对于这种类型的钙通道的干预,提供可能的新的治疗方法来对抗恶性肿瘤将是有启发性的。
    Transient receptor potential (TRP) channels are one primary type of calcium (Ca2+) permeable channels, and those relevant transmembrane and intracellular TRP channels were previously thought to be mainly associated with the regulation of cardiovascular and neuronal systems. Nowadays, however, accumulating evidence shows that those TRP channels are also responsible for tumorigenesis and progression, inducing tumor invasion and metastasis. However, the overall underlying mechanisms and possible signaling transduction pathways that TRP channels in malignant tumors might still remain elusive. Therefore, in this review, we focus on the linkage between TRP channels and the significant characteristics of tumors such as multi-drug resistance (MDR), metastasis, apoptosis, proliferation, immune surveillance evasion, and the alterations of relevant tumor micro-environment. Moreover, we also have discussed the expression of relevant TRP channels in various forms of cancer and the relevant inhibitors\' efficacy. The chemo-sensitivity of the anti-cancer drugs of various acting mechanisms and the potential clinical applications are also presented. Furthermore, it would be enlightening to provide possible novel therapeutic approaches to counteract malignant tumors regarding the intervention of calcium channels of this type.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肠道菌群与许多天然产物的药理活性有关。作为一种有效的降血脂药物,小檗碱(BBR)的临床应用受到明显的个体间反应差异的极大阻碍。迄今为止,关于肠道微生物与其治疗效果之间的因果关系的证据很少,以及细菌改变与个体间反应变异的联系。
    这项研究旨在确认肠道微生物群在BBR抗高脂血症作用中的因果作用,并确定可以预测其有效性的关键细菌。
    在高脂血症患者中研究了肠道菌群与BBR个体间反应变异之间的相关性。随后通过改变给药途径评估了肠道微生物在BBR抗高脂血症作用中的因果作用。与抗生素共同治疗,粪便微生物移植,和宏基因组分析。
    三个月的临床研究表明,BBR可有效降低血脂,但表现出明显的反应变化。BBR的降胆固醇而不是降甘油三酯的作用与其对肠道菌群的调节密切相关。有趣的是,Alistipes和Blautia的基线水平可以准确预测其在以下治疗中的抗高胆固醇血症疗效。小鼠的因果关系实验进一步证实,肠道微生物群对介导BBR的降脂作用既必要又足够。Blautia的缺失基本上消除了BBR降低胆固醇的功效。
    肠道菌群对于BBR的高脂血症改善作用是必要和充分的。肠道微生物的基线组成可以有效预测其药物治疗效果,为实现个性化治疗提供了新的途径。
    Gut microbiota has been implicated in the pharmacological activities of many natural products. As an effective hypolipidemic agent, berberine (BBR)\'s clinical application is greatly impeded by the obvious inter-individual response variation. To date, little evidence exists on the causality between gut microbes and its therapeutic effects, and the linkage of bacteria alterations to the inter-individual response variation.
    This study aims to confirm the causal role of the gut microbiota in BBR\'s anti-hyperlipidemic effect and identify key bacteria that can predict its effectiveness.
    The correlation between gut microbiota and BBR\'s inter-individual response variation was studied in hyperlipidemic patients. The causal role of gut microbes in BBR\'s anti-hyperlipidemic effects was subsequently assessed by altered administration routes, co-treatment with antibiotics, fecal microbiota transplantation, and metagenomic analysis.
    Three-month clinical study showed that BBR was effectively to decrease serum lipids but displayed an obvious response variation. The cholesterol-lowering but not triglyceride-decreasing effect of BBR was closely related to its modulation on gut microbiota. Interestingly, the baseline levels of Alistipes and Blautia could accurately predict its anti-hypercholesterolemic efficiency in the following treatment. Causality experiments in mice further confirmed that the gut microbiome is both necessary and sufficient to mediate the lipid-lowering effect of BBR. The absence of Blautia substantially abolished BBR\'s cholesterol-decreasing efficacy.
    The gut microbiota is necessary and sufficient for BBR\'s hyperlipidemia-ameliorating effect. The baseline composition of gut microbes can be an effective predictor for its pharmacotherapeutic efficacy, providing a novel way to achieve personalized therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖尿病,一组以持续性高血糖为特征的代谢紊乱,影响着全世界数百万人,并且正在上升。膳食蛋白质,来自广泛的食物来源,富含具有抗糖尿病特性的生物活性肽。值得注意的例子包括AGFAGDDAPR,红茶衍生的肽,VRIRLLQRFNKRS,β-伴大豆球蛋白衍生肽,和乳源肽VPP,通过多种途径,包括改善β细胞功能,在糖尿病啮齿动物模型中显示出抗糖尿病作用,抑制α细胞增殖,抑制食物摄入,增加门静脉胆囊收缩素浓度,增强胰岛素信号和葡萄糖摄取,改善脂肪组织炎症。尽管对生物活性肽的糖调节特性进行了大量研究,这些生物活性肽在功能性食品或营养食品中的掺入由于在肽研究和商业化领域中存在若干挑战而受到广泛限制。在这个领域正在进行的研究,然而,为此目的铺路是至关重要的。
    Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a β-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    阿尔茨海默病(AD),老年人痴呆症最突出的形式,没有治愈方法。专注于减少淀粉样蛋白β或过度磷酸化Tau蛋白的策略在临床试验中大部分失败。迫切需要新的治疗目标和策略。新出现的数据表明,为了应对环境压力,线粒体启动综合应激反应(ISR),被证明对健康衰老和神经保护有益。这里,我们回顾了一些数据,这些数据表明,参与氧化磷酸化的线粒体电子传递复合物是小分子靶向治疗的中心,可以诱导有益的线粒体ISR.具体来说,线粒体复合物I的部分抑制已被用作多种人类疾病的新策略,包括AD,一些小分子正在临床试验中进行测试。我们讨论了目前对这种违反直觉的方法所涉及的分子机制的理解。由于这一战略也被证明可以提高健康和寿命,开发安全有效的复合物I抑制剂可以促进健康衰老,延缓与年龄相关的神经退行性疾病的发作。
    Alzheimer\'s disease (AD), the most prominent form of dementia in the elderly, has no cure. Strategies focused on the reduction of amyloid beta or hyperphosphorylated Tau protein have largely failed in clinical trials. Novel therapeutic targets and strategies are urgently needed. Emerging data suggest that in response to environmental stress, mitochondria initiate an integrated stress response (ISR) shown to be beneficial for healthy aging and neuroprotection. Here, we review data that implicate mitochondrial electron transport complexes involved in oxidative phosphorylation as a hub for small molecule-targeted therapeutics that could induce beneficial mitochondrial ISR. Specifically, partial inhibition of mitochondrial complex I has been exploited as a novel strategy for multiple human conditions, including AD, with several small molecules being tested in clinical trials. We discuss current understanding of the molecular mechanisms involved in this counterintuitive approach. Since this strategy has also been shown to enhance health and life span, the development of safe and efficacious complex I inhibitors could promote healthy aging, delaying the onset of age-related neurodegenerative diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    干扰素基因(STING)信号的环GMP-AMP合酶(cGAS)-刺激物通过诱导细胞因子在微生物和肿瘤免疫学中发挥重要的调节功能,主要是I型干扰素。最近,cGAS-STING轴的异常和紊乱信号与多种无菌性炎症性疾病密切相关,包括心力衰竭,心肌梗塞,心脏肥大,非酒精性脂肪性肝病,主动脉瘤和夹层,肥胖,等。这是因为大量的损伤相关分子模式(线粒体DNA,细胞外囊泡中的DNA)从代谢细胞器和组织的复发性损伤中释放,这是由路径感知。此外,cGAS-STING通路与细胞内基本稳态过程如细胞凋亡的串扰,自噬,调节细胞代谢.靶向脱轨的STING信号已经成为慢性炎性疾病所必需的。同时,过度的I型干扰素信号传导对心血管和代谢健康的影响仍然难以捉摸.在这次审查中,我们总结了cGAS-STING通路与心血管和代谢紊乱之间的密切联系。我们还讨论了该途径的一些潜在小分子抑制剂。这篇综述提供了见解,以激发人们对心血管和代谢组织和疾病中这种信号轴的兴趣并支持未来的研究。
    The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling exert essential regulatory function in microbial-and onco-immunology through the induction of cytokines, primarily type I interferons. Recently, the aberrant and deranged signaling of the cGAS-STING axis is closely implicated in multiple sterile inflammatory diseases, including heart failure, myocardial infarction, cardiac hypertrophy, nonalcoholic fatty liver diseases, aortic aneurysm and dissection, obesity, etc. This is because of the massive loads of damage-associated molecular patterns (mitochondrial DNA, DNA in extracellular vesicles) liberated from recurrent injury to metabolic cellular organelles and tissues, which are sensed by the pathway. Also, the cGAS-STING pathway crosstalk with essential intracellular homeostasis processes like apoptosis, autophagy, and regulate cellular metabolism. Targeting derailed STING signaling has become necessary for chronic inflammatory diseases. Meanwhile, excessive type I interferons signaling impact on cardiovascular and metabolic health remain entirely elusive. In this review, we summarize the intimate connection between the cGAS-STING pathway and cardiovascular and metabolic disorders. We also discuss some potential small molecule inhibitors for the pathway. This review provides insight to stimulate interest in and support future research into understanding this signaling axis in cardiovascular and metabolic tissues and diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    对乙酰氨基酚(APAP)是一种广泛使用的镇痛和解热药物,在治疗剂量下是安全的,但过量服用后可能导致严重的肝损伤甚至肝衰竭。APAP肝毒性小鼠模型与人类病理生理学密切相关。因此,这种临床相关模型经常用于研究药物性肝损伤的机制,甚至用于测试潜在的治疗干预措施.然而,模型的复杂性需要对病理生理学有透彻的了解,以获得有效的结果和可转化为临床的机制信息。然而,使用此模型的许多研究都存在缺陷,这危害了科学和临床的相关性。这篇综述的目的是提供一个模型框架,在该框架中可以获得机械上合理和临床相关的数据。讨论提供了对损伤机制以及如何研究它的见解,包括药物代谢的关键作用,线粒体功能障碍,坏死细胞死亡,自噬和无菌炎症反应。此外,讨论了使用此模型时最常犯的错误。因此,在研究APAP肝毒性时考虑这些建议将有助于发现更多临床相关的干预措施.
    Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非酒精性脂肪性肝病(NAFLD)是肝脏总胆固醇(TC)和总甘油三酯(TG)积累增加的结果。在我们之前的研究中,我们发现用金丝桃苷治疗的大鼠对肝脏脂质积累产生了抗性。
    本研究旨在研究金丝桃苷对NAFLD大鼠肝脏组织脂质积累的抑制作用的可能机制。
    应用针对胆汁酸(BA)代谢的无标记蛋白质组学和代谢组学,以揭示金丝桃苷减少NAFLD大鼠肝脂质积累的机制。
    为了应对金丝桃苷治疗,与脂肪酸降解途径相关的几种蛋白质,胆固醇代谢途径,胆汁分泌途径发生了改变,包括ECI1,Acnat2,ApoE,和BSEP,等。核受体(NRs)的表达,包括法尼醇X受体(FXR)和肝X受体α(LXRα),在金丝桃苷治疗的大鼠肝脏组织中增加,伴随着肝脏从头脂肪生成中催化酶的蛋白质表达减少,以及经典和替代BA合成途径中酶的蛋白质水平增加。肝缀合的BAs比未缀合的BAs毒性更小并且更亲水。BA靶向代谢组学表明,金丝桃苷可以降低肝脏未结合BA的水平,并增加肝脏结合BA的水平。
    合照,结果表明,金丝桃苷可以通过调节胆固醇代谢以及BAs的代谢和排泄来改善NAFLD的状况。这些发现有助于理解金丝桃苷降低NAFLD大鼠胆固醇和甘油三酯的机制。
    Non-alcoholic fatty liver disease (NAFLD) results from increased hepatic total cholesterol (TC) and total triglyceride (TG) accumulation. In our previous study, we found that rats treated with hyperoside became resistant to hepatic lipid accumulation.
    The present study aims to investigate the possible mechanisms responsible for the inhibitory effects of hyperoside on the lipid accumulation in the liver tissues of the NAFLD rats.
    Label-free proteomics and metabolomics targeting at bile acid (BA) metabolism were applied to disclose the mechanisms for hyperoside reducing hepatic lipid accumulation among the NAFLD rats.
    In response to hyperoside treatment, several proteins related to the fatty acid degradation pathway, cholesterol metabolism pathway, and bile secretion pathway were altered, including ECI1, Acnat2, ApoE, and BSEP, etc. The expression of nuclear receptors (NRs), including farnesoid X receptor (FXR) and liver X receptor α (LXRα), were increased in hyperoside-treated rats\' liver tissue, accompanied by decreased protein expression of catalyzing enzymes in the hepatic de novo lipogenesis and increased protein level of enzymes in the classical and alternative BA synthetic pathway. Liver conjugated BAs were less toxic and more hydrophilic than unconjugated BAs. The BA-targeted metabolomics suggest that hyperoside could decrease the levels of liver unconjugated BAs and increase the levels of liver conjugated BAs.
    Taken together, the results suggest that hyperoside could improve the condition of NAFLD by regulating the cholesterol metabolism as well as BAs metabolism and excretion. These findings contribute to understanding the mechanisms by which hyperoside lowers the cholesterol and triglyceride in NAFLD rats.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:许多研究强调了肌肉特异性的产热机制,涉及由sarco(endo)质网Ca2+-ATPase(SERCA)驱动的Ca2+的无效循环,并通过ATP水解产生热量,这是一种有希望的抵抗肥胖和代谢功能障碍的策略。然而,据我们所知,目前还没有关于药理学靶向SERCA在人骨骼肌细胞中的代谢作用的实验研究报道.因此,在本研究中,我们旨在探索SERCA激活化合物的作用,CDN1163,对分化的人骨骼肌细胞(肌管)能量代谢的影响。
    方法:在本研究中,我们使用了来自股外侧肌的肌肉活检和来自瘦肌间肌的原发性肌管培养物,健康的男性捐赠者。使用放射性底物研究了肌管中的能量代谢。用海马XF24生物分析仪评估耗氧率,而代谢基因和蛋白质表达是通过qPCR和免疫印迹确定的,分别。
    结果:用CDN1163治疗肌管的急性(4小时)和慢性(5天)均显示葡萄糖的摄取和氧化增加,以及在羰基氰4-(三氟甲氧基)苯基腙(FCCP)存在下的完全脂肪酸氧化。这些影响得到了氧气消耗率测量的支持,其中CDN1163治疗后氧化备用容量和最大呼吸增强。此外,CDN1163的慢性治疗可改善细胞对油酸(OA)的摄取和脂肪酸β-氧化。OA代谢增加伴随着肉碱棕榈酰转移酶(CPT)1B的mRNA表达增强,丙酮酸脱氢酶激酶(PDK)4,以及增加AMP激活的蛋白激酶(AMPK)Thr172磷酸化。此外,慢性CDN1163治疗后,硬脂酰辅酶A去饱和酶(SCD)1的表达水平降低,同时乙酸从头生成脂肪和OA形成二酰甘油(DAG)。
    结论:总而言之,这些结果表明,CDN1163激活SERCA可以增强人体肌管的能量代谢,这可能有利于与代谢功能障碍相关的疾病,如肥胖和2型糖尿病。
    OBJECTIVE: A number of studies have highlighted muscle-specific mechanisms of thermogenesis involving futile cycling of Ca2+ driven by sarco (endo)plasmic reticulum Ca2+-ATPase (SERCA) and generating heat from ATP hydrolysis to be a promising strategy to counteract obesity and metabolic dysfunction. However, to the best of our knowledge, no experimental studies concerning the metabolic effects of pharmacologically targeting SERCA in human skeletal muscle cells have been reported. Thus, in the present study, we aimed to explore the effects of SERCA-activating compound, CDN1163, on energy metabolism in differentiated human skeletal muscle cells (myotubes).
    METHODS: In this study, we used primary myotube cultures derived from muscle biopsies of the musculus vastus lateralis and musculi interspinales from lean, healthy male donors. Energy metabolism in myotubes was studied using radioactive substrates. Oxygen consumption rate was assessed with the Seahorse XF24 bioanalyzer, whereas metabolic genes and protein expressions were determined by qPCR and immunoblotting, respectively.
    RESULTS: Both acute (4 ​h) and chronic (5 days) treatment of myotubes with CDN1163 showed increased uptake and oxidation of glucose, as well as complete fatty acid oxidation in the presence of carbonyl cyanide 4-(trifluromethoxy)phenylhydrazone (FCCP). These effects were supported by measurement of oxygen consumption rate, in which the oxidative spare capacity and maximal respiration were enhanced after CDN1163-treatment. In addition, chronic treatment with CDN1163 improved cellular uptake of oleic acid (OA) and fatty acid β-oxidation. The increased OA metabolism was accompanied by enhanced mRNA-expression of carnitine palmitoyl transferase (CPT) 1B, pyruvate dehydrogenase kinase (PDK) 4, as well as increased AMP-activated protein kinase (AMPK)Thr172 phosphorylation. Moreover, following chronic CDN1163 treatment, the expression levels of stearoyl-CoA desaturase (SCD) 1 was decreased together with de novo lipogenesis from acetic acid and formation of diacylglycerol (DAG) from OA.
    CONCLUSIONS: Altogether, these results suggest that SERCA activation by CDN1163 enhances energy metabolism in human myotubes, which might be favourable in relation to disorders that are related to metabolic dysfunction such as obesity and type 2 diabetes mellitus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号