mechanosensing

机械传感
  • 文章类型: Journal Article
    巨噬细胞免疫细胞存在于由其物理和生化环境控制的表型的塑性光谱上。控制巨噬细胞功能以促进免疫再生或对抗病理已成为治疗可能性。翻译巨噬细胞免疫调节疗法的限速步骤是缺乏巨噬细胞微环境中的物理学和生物化学如何融合以告知表型的基本知识。在这篇综述中,我们探讨了生物工程模型系统的最新趋势,该系统集成了应用于巨噬细胞机械传感和可塑性的物理和生化变量。我们专注于调整机械力和生物材料组成如何在生理和病理环境中协调巨噬细胞功能。最终,对巨噬细胞刺激反应性的更广泛理解导致了未来调节疗法的知情设计.
    Macrophage immune cells exist on a plastic spectrum of phenotypes governed by their physical and biochemical environment. Controlling macrophage function to facilitate immunological regeneration or fighting pathology has emerged as a therapeutic possibility. The rate-limiting step in translating macrophage immunomodulation therapies has been the absence of fundamental knowledge of how physics and biochemistry in the macrophage microenvironment converge to inform phenotype. In this review we explore recent trends in bioengineered model systems that integrate physical and biochemical variables applied to macrophage mechanosensing and plasticity. We focus on how tuning of mechanical forces and biomaterial composition orchestrate macrophage function in physiological and pathological contexts. Ultimately, a broader understanding of stimuli-responsiveness in macrophages leads to informed design for future modulatory therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    拉伸缩短周期(SSC)涉及肌肉延长(偏心收缩),然后立即缩短(同心收缩)。这种组合增强了力量,工作,和功率输出与纯缩短(SHO)相比,这就是所谓的SSC效应。最近的证据表明,基于跨桥的(XB)和基于非跨桥的(非XB,例如,titin)结构有助于这种效果。这项研究分析了SSC和SHO后的力再发展,以进一步了解XB和非XB结构在SSC效应方面的作用。在不同SSC速度(30%,60%,最大缩短速度的85%)和恒定的拉伸缩短幅度(最佳长度的18%)。XB抑制剂blebbistatin用于区分XB和非XB对力产生的贡献。结果显示SSC导致显著更大(1.02±.15vs.0.68±.09[ΔF/Δt];t(62)=8.61,p<.001,d=2.79)和更快(75msvs.205[ms];t(62)=-6.37,p<.001,d=-1.48)与对照处理中的SHO相比的力再发展。在blebbistatin治疗中,SSC仍然产生更大的结果(.11±.03与.06±.01[ΔF/Δt];t(62)=8.00,p<.001,d=2.24)和更快(3010±1631vs.7916±3230[ms];t(62)=-8.00,p<.001,d=-1.92)与SHO相比,力重新开发。这些发现加深了我们对SSC效应的理解,强调非XB结构如titin参与调节力的产生。这种调节可能涉及肌肉收缩过程中从拉伸到信号传输的复杂机械感觉耦合。
    Stretch-shortening cycles (SSCs) involve muscle lengthening (eccentric contractions) instantly followed by shortening (concentric contractions). This combination enhances force, work, and power output compared to pure shortening (SHO), which is known as SSC-effect. Recent evidence indicates both cross-bridge-based (XB) and non-cross-bridge-based (non-XB, e.g., titin) structures contribute to this effect. This study analyzed force re-development following SSCs and SHO to gain further insight into the roles of XB and non-XB structures regarding the SSC-effect. Experiments were conducted on rat soleus muscle fibres (n=16) with different SSC velocities (30%, 60%, 85% of maximum shortening velocity) and constant stretch-shortening magnitudes (18% of optimum length). The XB inhibitor blebbistatin was used to distinguish between XB and non-XB contributions to force generation. Results showed SSCs led to significantly greater (1.02±.15 vs. 0.68±.09 [ΔF/Δt]; t(62)=8.61, p<.001, d=2.79) and faster (75 ms vs. 205 [ms]; t(62) = -6.37, p<.001, d=-1.48) force re-development compared to SHO in the control treatment. In the blebbistatin treatment, SSCs still resulted in greater (.11±.03 vs. .06±.01 [ΔF/Δt]; t(62) = 8.00, p<.001, d=2.24) and faster (3010±1631 vs. 7916±3230 [ms]; t(62) = -8.00, p<.001, d=-1.92) force re-development compared to SHO. These findings deepen our understanding of the SSC-effect, underscoring the involvement of non-XB structures like titin in modulating force production. This modulation likely involves complex mechanosensory coupling from stretch to signal transmission during muscle contraction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    机械传感,或者细胞如何感知和响应物理环境,对生物功能的许多方面都至关重要,从发育过程中的细胞运动到癌症转移,免疫反应和基因表达驱动细胞命运的决定。相关的物理刺激包括细胞外基质的硬度,收缩力,血管中的剪切流,细胞微环境和膜蛋白迁移率的复杂形貌。尽管机械传感在非免疫细胞中得到了更广泛的研究,越来越清楚的是,物理线索深刻地影响着免疫系统细胞的信号功能。在这篇评论中,我们总结了最近关于免疫细胞机械调节的研究,特别是淋巴细胞,并探索产生力的细胞骨架机制如何介导机械传感。我们讨论了淋巴细胞功能的机械调节的一般原则,从受体激活的分子尺度到细胞对机械刺激的反应。
    Mechanosensing, or how cells sense and respond to the physical environment, is crucial for many aspects of biological function, ranging from cell movement during development to cancer metastasis, the immune response and gene expression driving cell fate determination. Relevant physical stimuli include the stiffness of the extracellular matrix, contractile forces, shear flows in blood vessels, complex topography of the cellular microenvironment and membrane protein mobility. Although mechanosensing has been more widely studied in non-immune cells, it has become increasingly clear that physical cues profoundly affect the signaling function of cells of the immune system. In this Review, we summarize recent studies on mechanical regulation of immune cells, specifically lymphocytes, and explore how the force-generating cytoskeletal machinery might mediate mechanosensing. We discuss general principles governing mechanical regulation of lymphocyte function, spanning from the molecular scale of receptor activation to cellular responses to mechanical stimuli.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Filopodia,广泛分布在细胞表面,以它们的动态扩展为特征,在无数的生物过程中起着举足轻重的作用。它们的功能从机械传感和指导到早期胚胎细胞组织过程中的细胞-细胞通讯。丝足在致病过程中具有重要作用,如癌症侵袭和病毒传播。丝状体的分子图谱揭示了丝状体功能所必需的通用成分。并行,最近对控制丝足病动力学的生物物理机制的见解为丝足病的生物学功能的更广泛研究提供了基础。我们强调最近发现丝足病在发育和发病机理的各个阶段的参与,并概述了这些细胞结构在一系列细胞活动中的复杂分子和物理特征。
    Filopodia, widely distributed on cell surfaces, are distinguished by their dynamic extensions, playing pivotal roles in a myriad of biological processes. Their functions span from mechanosensing and guidance to cell-cell communication during cellular organization in the early embryo. Filopodia have significant roles in pathogenic processes, such as cancer invasion and viral dissemination. Molecular mapping of the filopodome has revealed generic components essential for filopodia functions. In parallel, recent insights into biophysical mechanisms governing filopodia dynamics have provided the foundation for broader investigations of filopodia\'s biological functions. We highlight recent discoveries of engagement of filopodia in various stages of development and pathogenesis and present an overview of intricate molecular and physical features of these cellular structures across a spectrum of cellular activities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    值得注意的是,牙齿在异常高的机械负荷下如何保持健康状况。这表明在其结构中存在固有的机械适应机制以抵抗恒定的应力。Dentin,位于搪瓷和纸浆之间,在机械支撑牙齿功能中起着至关重要的作用。其中等刚度和粘弹性,归因于它的矿化,纳米纤维细胞外基质,提供灵活性,力量,和刚性,使其能够承受机械载荷而不会破裂。此外,牙本质的独特建筑特征,如牙本质小管内的成牙本质过程和牙本质中的成牙本质细胞与牙髓中的感觉神经元之间的空间分隔,有助于外部刺激的独特感官感知,同时充当牙本质牙髓复合体的防御屏障。由于牙本质的结构控制着其在响应机械刺激的伤害感受和修复中的功能,了解牙本质机械生物学对于开发牙本质相关疾病和牙本质牙髓再生的疼痛管理治疗至关重要。这篇综述讨论了牙本质的物理特征如何调节机械感应,专注于机械敏感离子通道。此外,我们探索先进的体外平台,模仿牙本质的物理特征,提供对基本机械生物学现象的更深入的见解,并为牙本质疾病的有效机械治疗策略奠定基础。
    It is remarkable how teeth maintain their healthy condition under exceptionally high levels of mechanical loading. This suggests the presence of inherent mechanical adaptation mechanisms within their structure to counter constant stress. Dentin, situated between enamel and pulp, plays a crucial role in mechanically supporting tooth function. Its intermediate stiffness and viscoelastic properties, attributed to its mineralized, nanofibrous extracellular matrix, provide flexibility, strength, and rigidity, enabling it to withstand mechanical loading without fracturing. Moreover, dentin\'s unique architectural features, such as odontoblast processes within dentinal tubules and spatial compartmentalization between odontoblasts in dentin and sensory neurons in pulp, contribute to a distinctive sensory perception of external stimuli while acting as a defensive barrier for the dentin-pulp complex. Since dentin\'s architecture governs its functions in nociception and repair in response to mechanical stimuli, understanding dentin mechanobiology is crucial for developing treatments for pain management in dentin-associated diseases and dentin-pulp regeneration. This review discusses how dentin\'s physical features regulate mechano-sensing, focusing on mechano-sensitive ion channels. Additionally, we explore advanced in vitro platforms that mimic dentin\'s physical features, providing deeper insights into fundamental mechanobiological phenomena and laying the groundwork for effective mechano-therapeutic strategies for dentinal diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    头发,或毛发状纤维结构,在生物学中无处不在,来自哺乳动物身体上的毛皮,在植物的毛状体上,单细胞生物鞭毛上的mstigonemes。虽然这些细长的突起是被动的,它们是多功能的,有助于调解与环境的互动。它们提供隔热,感官信息,可逆粘附,和表面调制(例如,超疏水性)。这篇综述将介绍生物毛发已被发现执行的各种功能,头发的大小跨越六个数量级,从哺乳动物的毫米厚皮毛到蝙蝠噬菌体上的纳米厚纤维状超微结构。头发根据它们的功能进行分类,包括保护(例如,热调节和防御),运动,喂养,和感应。通过了解生物毛发的多功能功能,生物启发的解决方案可能会在长度范围内开发。
    Hair, or hair-like fibrillar structures, are ubiquitous in biology, from fur on the bodies of mammals, over trichomes of plants, to the mastigonemes on the flagella of single-celled organisms. While these long and slender protuberances are passive, they are multifunctional and help to mediate interactions with the environment. They provide thermal insulation, sensory information, reversible adhesion, and surface modulation (e.g., superhydrophobicity). This review will present various functions that biological hairs have been discovered to carry out, with the hairs spanning across six orders of magnitude in size, from the millimeter-thick fur of mammals down to the nanometer-thick fibrillar ultrastructures on bateriophages. The hairs are categorized according to their functions, including protection (e.g., thermal regulation and defense), locomotion, feeding, and sensing. By understanding the versatile functions of biological hairs, bio-inspired solutions may be developed across length scales.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:糖尿病和高血压是血管疾病的重要危险因素,包括动脉粥样硬化.该过程中的驱动因素是脂质在血管壁的平滑肌细胞中的积累。葡萄糖和机械敏感性转录共激活因子,心肌素相关转录因子A(MRTF-A/MKL1)可以促进培养的人平滑肌细胞中的脂质积累,并有助于平滑肌源性泡沫细胞的形成。这项研究的目的是确定完整的人血管离体是否可用于评估血管壁中的脂质积累,并且如果该过程依赖于MRTF和/或半乳糖凝集素-3/LGALS3。半乳糖凝集素-3是平滑肌转分化的早期标志物,是泡沫细胞形成和动脉粥样硬化的潜在介质。
    结果:在器官培养模型中,人类乳腺动脉和隐静脉暴露于改变的胆固醇和葡萄糖水平。脂质的积累,用油红O量化,胆固醇负荷和升高的葡萄糖浓度增加。CCG-203971对MRTF的药理学抑制减少了脂质积累,而腺病毒介导的MRTF-A过表达具有相反的作用。抑制MRTF后,胆固醇诱导的半乳糖凝集素3表达降低。重要的是,galectin-3与GB1107的药理学抑制减少了胆固醇负荷后血管壁中的脂质积累。
    结论:人动脉和静脉的离体器官培养可用于评估完整血管壁中的脂质积累,以及腺病毒转导和药理抑制。虽然MRTF和半乳糖凝集素-3可能有益,在某些情况下的抗炎作用,我们的结果,这表明脂质积累显著减少,支持进一步评估MRTF和半乳糖凝集素-3抑制剂对动脉粥样硬化性血管疾病的治疗性干预。
    OBJECTIVE: Diabetes and hypertension are important risk factors for vascular disease, including atherosclerosis. A driving factor in this process is lipid accumulation in smooth muscle cells of the vascular wall. The glucose- and mechano-sensitive transcriptional coactivator, myocardin-related transcription factor A (MRTF-A/MKL1) can promote lipid accumulation in cultured human smooth muscle cells and contribute to the formation of smooth muscle-derived foam cells. The purpose of this study was to determine if intact human blood vessels ex vivo can be used to evaluate lipid accumulation in the vascular wall, and if this process is dependent on MRTF and/or galectin-3/LGALS3. Galectin-3 is an early marker of smooth muscle transdifferentiation and a potential mediator for foam cell formation and atherosclerosis.
    RESULTS: Human mammary arteries and saphenous veins were exposed to altered cholesterol and glucose levels in an organ culture model. Accumulation of lipids, quantified by Oil Red O, was increased by cholesterol loading and elevated glucose concentrations. Pharmacological inhibition of MRTF with CCG-203971 decreased lipid accumulation, whereas adenoviral-mediated overexpression of MRTF-A had the opposite effect. Cholesterol-induced expression of galectin-3 was decreased after inhibition of MRTF. Importantly, pharmacological inhibition of galectin-3 with GB1107 reduced lipid accumulation in the vascular wall after cholesterol loading.
    CONCLUSIONS: Ex vivo organ culture of human arteries and veins can be used to evaluate lipid accumulation in the intact vascular wall, as well as adenoviral transduction and pharmacological inhibition. Although MRTF and galectin-3 may have beneficial, anti-inflammatory effects under certain circumstances, our results, which demonstrate a significant decrease in lipid accumulation, support further evaluation of MRTF- and galectin-3-inhibitors for therapeutic intervention against atherosclerotic vascular disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    细胞骨架维持细胞和组织的力量,它招致物理损伤,必须修复以保持机械稳态。LIM结构域蛋白zyxin检测肌动蛋白-肌球蛋白应力纤维中的力诱导的破裂,协调下游修复因子,通过不明确的机制恢复应力纤维完整性。这里,我们用纯化的蛋白质重建应力纤维修复,揭示酶素的力调节结合相互作用和细胞骨架动力学之间的详细联系。除了结合单个紧张的肌动蛋白丝(F-肌动蛋白),zyxin的LIM结构域形成桥断丝片段的力依赖性组装体。Zyxin组件通过多价相互作用参与修复因子,通过VASP协调新的F-肌动蛋白的成核,并通过α-actinin将其交联成对齐的束。通过这些联合活动,应力纤维修复在细胞中微米级损伤位点的核心内开始,解释这些F-肌动蛋白耗尽区域是如何迅速恢复的。因此,肌动蛋白修复机制的zyxin力依赖性组织固有地在网络尺度上运行以维持细胞骨架的完整性。
    As the cytoskeleton sustains cell and tissue forces, it incurs physical damage that must be repaired to maintain mechanical homeostasis. The LIM-domain protein zyxin detects force-induced ruptures in actin-myosin stress fibers, coordinating downstream repair factors to restore stress fiber integrity through unclear mechanisms. Here, we reconstitute stress fiber repair with purified proteins, uncovering detailed links between zyxin\'s force-regulated binding interactions and cytoskeletal dynamics. In addition to binding individual tensed actin filaments (F-actin), zyxin\'s LIM domains form force-dependent assemblies that bridge broken filament fragments. Zyxin assemblies engage repair factors through multi-valent interactions, coordinating nucleation of new F-actin by VASP and its crosslinking into aligned bundles by ɑ-actinin. Through these combined activities, stress fiber repair initiates within the cores of micron-scale damage sites in cells, explaining how these F-actin depleted regions are rapidly restored. Thus, zyxin\'s force-dependent organization of actin repair machinery inherently operates at the network scale to maintain cytoskeletal integrity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纤维细胞外基质(ECM)对于组织再生至关重要,并影响植入的设备治疗。先前对纤维状生物材料的研究表明,细胞对表面取向的反应各不相同,通常是由于表面形貌和基材弹性之间的相互作用不清楚。我们的研究通过表面印刷策略实现了具有不同纤维形貌和不同基材模量的水凝胶的快速创建,从而解决了这一差距。细胞在纳米图案软水凝胶上表现出增强的牵引力,特别是与常规软水凝胶相比随机分布的模式。同时,在具有对齐地形的刚性水凝胶上,与随机地形相比,观察到最佳的细胞机械传感。机理研究强调,细胞力感和粘附受到图案可变形性和局灶性粘附方向相互作用的影响,随后介导干细胞分化。我们的发现强调了在设计先进的组织工程生物材料中结合基底模量和形貌以指导细胞行为的重要性。
    The fibrous extracellular matrix (ECM) is vital for tissue regeneration and impacts implanted device treatments. Previous research on fibrous biomaterials shows varying cellular reactions to surface orientation, often due to unclear interactions between surface topography and substrate elasticity. Our study addresses this gap by achieving the rapid creation of hydrogels with diverse fibrous topographies and varying substrate moduli through a surface printing strategy. Cells exhibit heightened traction force on nanopatterned soft hydrogels, particularly with randomly distributed patterns compared with regular soft hydrogels. Meanwhile, on stiff hydrogels featuring an aligned topography, optimal cellular mechanosensing is observed compared to random topography. Mechanistic investigations highlight that cellular force-sensing and adhesion are influenced by the interplay of pattern deformability and focal adhesion orientation, subsequently mediating stem cell differentiation. Our findings highlight the importance of combining substrate modulus and topography to guide cellular behavior in designing advanced tissue engineering biomaterials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号