关键词: mechanosensing nanofiber orientation stem cell stiffness

Mesh : Hydrogels / chemistry Extracellular Matrix / chemistry Humans Cell Adhesion Biocompatible Materials / chemistry Surface Properties Tissue Engineering / methods Mechanotransduction, Cellular Cell Differentiation Focal Adhesions Animals Elastic Modulus Mesenchymal Stem Cells / cytology

来  源:   DOI:10.1021/acs.nanolett.4c01352

Abstract:
The fibrous extracellular matrix (ECM) is vital for tissue regeneration and impacts implanted device treatments. Previous research on fibrous biomaterials shows varying cellular reactions to surface orientation, often due to unclear interactions between surface topography and substrate elasticity. Our study addresses this gap by achieving the rapid creation of hydrogels with diverse fibrous topographies and varying substrate moduli through a surface printing strategy. Cells exhibit heightened traction force on nanopatterned soft hydrogels, particularly with randomly distributed patterns compared with regular soft hydrogels. Meanwhile, on stiff hydrogels featuring an aligned topography, optimal cellular mechanosensing is observed compared to random topography. Mechanistic investigations highlight that cellular force-sensing and adhesion are influenced by the interplay of pattern deformability and focal adhesion orientation, subsequently mediating stem cell differentiation. Our findings highlight the importance of combining substrate modulus and topography to guide cellular behavior in designing advanced tissue engineering biomaterials.
摘要:
纤维细胞外基质(ECM)对于组织再生至关重要,并影响植入的设备治疗。先前对纤维状生物材料的研究表明,细胞对表面取向的反应各不相同,通常是由于表面形貌和基材弹性之间的相互作用不清楚。我们的研究通过表面印刷策略实现了具有不同纤维形貌和不同基材模量的水凝胶的快速创建,从而解决了这一差距。细胞在纳米图案软水凝胶上表现出增强的牵引力,特别是与常规软水凝胶相比随机分布的模式。同时,在具有对齐地形的刚性水凝胶上,与随机地形相比,观察到最佳的细胞机械传感。机理研究强调,细胞力感和粘附受到图案可变形性和局灶性粘附方向相互作用的影响,随后介导干细胞分化。我们的发现强调了在设计先进的组织工程生物材料中结合基底模量和形貌以指导细胞行为的重要性。
公众号