virulence

毒力
  • 文章类型: Journal Article
    Sclerotinia sclerotiorum is a typical necrotrophic plant pathogenic fungus, which has a wide host range and can cause a variety of diseases, leading to serious loss of agricultural production around the world. It is difficult to control and completely eliminate the characteristics, chemical control methods is not ideal. Therefore, it is very important to know the pathogenic mechanism of S. sclerotiorum for improving host living environment, relieving agricultural pressure and promoting economic development. In this paper, the life cycle of S. sclerotiorum is introduced to understand the whole process of S. sclerotiorum infection. Through the analysis of the pathogenic mechanism, this paper summarized the reported content, mainly focused on the oxalic acid, cell wall degrading enzyme and effector protein in the process of infection and its mechanism. Besides, recent studies reported virulence-related genes in S. sclerotiorum have been summarized in the paper. According to analysis, those genes were related to the growth and development of the hypha and appressorium, the signaling and regulatory factors of S. sclerotiorum and so on, to further influence the ability to infect the host critically. The application of host-induced gene silencing (HIGS)is considered as a potential effective tool to control various fungi in crops, which provides an important reference for the study of pathogenesis and green control of S. sclerotiorum.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用特定种族的抗性基因仍然是保护小麦免受全球小麦锈病(Pt)引起的叶锈病的有效策略,而新出现的铂种族,由于快速的遗传进化,经常克服由种族特异性抗性基因传递的免疫反应。新进化的毒力Pt病原体的分子机制仍然未知。这里,我们从Pt中鉴定出一种诱导Lr15依赖性免疫应答的无毒蛋白AvrLr15。异源产生的AvrLr15触发了Lr15等基因小麦叶片中明显的细胞死亡。AvrLr15含有功能性信号肽,定位于植物细胞核和细胞质,可以抑制BAX诱导的细胞死亡。小麦中Lr15介导的抗性的逃避与AvrLr15中氨基酸的缺失和点突变有关,而不是与Lr15破坏Pt种族中的AvrLr15基因丢失有关,这意味着AvrLr15是Pt毒力功能所必需的。我们的发现确定了小麦种族特异性免疫的第一个分子决定子,并促进了Pt-小麦病理系统中第一个AVR/R基因对的鉴定,这将提供一个分子标记来监测天然Pt种群,并指导在田间部署Lr15抗性小麦品种。
    Employing race-specific resistance genes remains an effective strategy to protect wheat from leaf rust caused by Puccinia triticina (Pt) worldwide, while the newly emerged Pt races, owing to rapid genetic evolution, frequently overcome the immune response delivered by race-specific resistance genes. The molecular mechanisms underlying the newly evolved virulence Pt pathogen remain unknown. Here, we identified an avirulence protein AvrLr15 from Pt that induced Lr15-dependent immune responses. Heterologously produced AvrLr15 triggered pronounced cell death in Lr15-isogenic wheat leaves. AvrLr15 contains a functional signal peptide, localized to the plant nucleus and cytosol and can suppress BAX-induced cell death. Evasion of Lr15-mediated resistance in wheat was associated with a deletion and point mutations of amino acids in AvrLr15 rather than AvrLr15 gene loss in the Lr15-breaking Pt races, implying that AvrLr15 is required for the virulence function of Pt. Our findings identified the first molecular determinant of wheat race-specific immunity and facilitated the identification of the first AVR/R gene pair in the Pt-wheat pathosystem, which will provide a molecular marker to monitor natural Pt populations and guide the deployment of Lr15-resistant wheat cultivars in the field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    近年来,肺炎克雷伯菌(KP)致病型的趋同性报道越来越多。这些病原体结合了多重耐药和高毒力KP的特征。然而,临床使用的高毒力KP鉴定指标,例如高粘膜粘度,似乎在收敛的KP中差异表达,潜在的爆发克隆很难识别。我们旨在通过研究在克隆爆发期间分离出的属于高风险序列类型(ST)307的会聚KP菌株中高粘膜粘度和毒力的温度依赖性来填补这些知识空白。
    高粘膜粘度,生物膜的形成,和死亡率在不同温度下检查了Galleriamelonella幼虫(室温,28°C,37°C,40°C和42°C)以及包括电子显微镜在内的各种表型实验。通过qPCR分析探索表型变化的潜在机制,以评估质粒拷贝数,和转录组学。
    我们的结果表明,高于37°C的温度依赖性转变为高粘膜粘性表型,与增加的生物膜形成和体内死亡率一致,可能反映了细菌对发热样疾病的反应。此外,我们观察到含有碳青霉烯酶和rmpA基因的杂交质粒的质粒拷贝数增加。然而,转录组学分析显示在较高温度下rmpA表达没有变化,建议替代调节途径。
    这项研究不仅阐明了高温对会聚KP中的高粘膜粘度和毒力的影响,而且还阐明了其适应行为的先前未被认识到的方面,强调其对不断变化的环境的适应能力。
    UNASSIGNED: Convergence of Klebsiella pneumoniae (KP) pathotypes has been increasingly reported in recent years. These pathogens combine features of both multidrug-resistant and hypervirulent KP. However, clinically used indicators for hypervirulent KP identification, such as hypermucoviscosity, appear to be differentially expressed in convergent KP, potential outbreak clones are difficult to identify. We aimed to fill such knowledge gaps by investigating the temperature dependence of hypermucoviscosity and virulence in a convergent KP strain isolated during a clonal outbreak and belonging to the high-risk sequence type (ST)307.
    UNASSIGNED: Hypermucoviscosity, biofilm formation, and mortality rates in Galleria mellonella larvae were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C) and with various phenotypic experiments including electron microscopy. The underlying mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid copy numbers, and transcriptomics.
    UNASSIGNED: Our results show a temperature-dependent switch above 37°C towards a hypermucoviscous phenotype, consistent with increased biofilm formation and in vivo mortality, possibly reflecting a bacterial response to fever-like conditions. Furthermore, we observed an increase in plasmid copy number for a hybrid plasmid harboring carbapenemase and rmpA genes. However, transcriptomic analysis revealed no changes in rmpA expression at higher temperatures, suggesting alternative regulatory pathways.
    UNASSIGNED: This study not only elucidates the impact of elevated temperatures on hypermucoviscosity and virulence in convergent KP but also sheds light on previously unrecognized aspects of its adaptive behavior, underscoring its resilience to changing environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    嗜麦芽窄食单胞菌复合体(Smc)已成为导致死亡率增加的重要医院病原体,特别是在血液感染的情况下。
    这项研究采用全基因组测序(WGS)来评估遗传多样性,抗菌素耐药性概况,从9年的菌血症病例中获得的55株嗜麦芽嗜血杆菌分离株的分子流行病学和毒力基因频率。
    基于95%平均核苷酸同一性(ANI)和70%数字DNA-DNA杂交(dDDH)的阈值,我们将37个分离株分为6个已知物种,都属于Smc。在这项研究中测序的其余18个分离株被分配给6个新的基因组物种。在55个分离株中,我们确定了44种不同的序列类型(ST),包括22个已知的和22个新的等位基因组合。Smc对甲氧苄啶-磺胺甲恶唑(TMP/SMX)的耐药率为3.6%,在这些分离物中检测到sul1和一类整合子整合酶基因(intI)。所有Smc分离株都对米诺环素敏感。此外,所有Smc菌株都带有mota,pilu,smf-1和Stmpr2基因。同源物种1(100%,n=9),嗜麦芽窄食单胞菌(84.21%,n=19)和窄食单胞菌(71.43%,n=7)表明afaD基因的百分比较高,这也与较高的分离率有关。除了mota,pilu,smf-1和Stmpr2基因,所有嗜麦芽窄食链球菌菌株(100%)都含有entA,gspD,卡塔,和stmPr1基因,虽然所有基因物种1菌株(100%)都含有afaD,entA,gspD,和KatA基因.
    我们的研究强调了来自菌血症患者的Smc分离株的遗传多样性,揭示了22种新颖的ST类型,58个新等位基因和6个新基因组。研究发现嗜麦芽窄食链球菌和巴氏链球菌携带更多的毒力因子,强调准确菌株识别的重要性。对于对TMP/SMX耐药的患者,米诺环素是一种有前途的替代抗生素。
    UNASSIGNED: The Stenotrophomonas maltophilia complex (Smc) has emerged as a significant nosocomial pathogen contributing to increased mortality rates, particularly in case of bloodstream infections.
    UNASSIGNED: This study employed whole-genome sequencing (WGS) to assess the genetic diversity, antimicrobial resistance profiles, molecular epidemiology and frequencies of virulence genes among 55 S. maltophilia isolates obtained from bacteremic cases over a 9-year period.
    UNASSIGNED: Based on the threshold of 95% average nucleotide identity (ANI) and 70% digital DNA-DNA hybridization (dDDH) for genospecies delineation, we classified 37 isolates into 6 known species, all belonging to the Smc. The remaining 18 isolates sequenced in this study were assigned to 6 new genomospecies. Among the 55 isolates, we identified 44 different sequence types (STs), comprising 22 known and 22 novel allele combinations. The resistance rate of Smc against trimethoprim-sulfamethoxazole (TMP/SMX) was found to be 3.6%, with the sul1 and class one integron integrase genes (intI) detected in these isolates. All Smc isolates were susceptible to minocycline. Furthermore, all Smc strains harbored the motA, pilU, smf-1 and Stmpr2 genes. Genomospecies 1 (100%, n = 9), Stenotrophomonas maltophilia (84.21%, n = 19) and Stenotrophomonas sepilia (71.43%, n = 7) demonstrated a higher percentage of the afaD gene, which was also associated with a higher separation rate. In addition to motA, pilU, smf-1, and Stmpr2 genes, all S. maltophilia strains (100%) contained entA, gspD, KatA, and stmPr1 genes, while all genomospecies 1 strains (100%) contained afaD, entA, gspD, and KatA genes.
    UNASSIGNED: Our study highlights the genetic diversity among Smc isolates from patients with bacteremia, revealing 22 novel ST types, 58 new alleles and 6 new genomospecies. S. maltophilia and S. pavanii were found to carry more virulence factors, emphasizing the importance of accurate strain identification. Minocycline emerged as a promising alternative antibiotic for patients who were resistant to TMP/SMX.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鲍曼不动杆菌(AB)已成为易感和重症患者的主要病原体。尚不清楚由于AB菌血症引起的早期死亡率(EM)是由于感染患者的临床特征较差还是病原体的毒力所致。在这项研究中,我们旨在研究AB毒力对菌血症引起的EM的影响。这项回顾性研究包括138例AB菌血症患者(年龄≥18岁),他们在2015年至2019年期间入住韩国三级护理教学医院。EM定义为菌血症发作后7天内发生的死亡。将从患者血液培养物中获得的AB临床分离株分别注射到15只Galleriamelonella幼虫中,将其孵育5天。根据死亡幼虫的数量,将临床分离株分为高毒力和低毒力组。合并患者的临床数据,并进行多变量Cox回归分析,以确定EM的危险因素。总的来说,48/138(34.8%)患者在菌血症发作后7天内死亡。Pitt菌血症评分是唯一与EM相关的危险因素。总之,AB毒力对AB菌血症患者EM无独立影响。
    Acinetobacter baumannii (AB) has emerged as a major pathogen in vulnerable and severely ill patients. It remains unclear whether early mortality (EM) due to AB bacteremia is because of worse clinical characteristics of the infected patients or the virulence of the pathogen. In this study, we aimed to investigate the effect of AB virulence on EM due to bacteremia. This retrospective study included 138 patients with AB bacteremia (age: ≥ 18 years) who were admitted to a tertiary care teaching hospital in South Korea between 2015 and 2019. EM was defined as death occurring within 7 days of bacteremia onset. The AB clinical isolates obtained from the patients\' blood cultures were injected into 15 Galleria mellonella larvae each, which were incubated for 5 days. Clinical isolates were classified into high- and low-virulence groups based on the number of dead larvae. Patients\' clinical data were combined and subjected to multivariate Cox regression analyses to identify the risk factors for EM. In total, 48/138 (34.8%) patients died within 7 days of bacteremia onset. The Pitt bacteremia score was the only risk factor associated with EM. In conclusion, AB virulence had no independent effect on EM in patients with AB bacteremia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    灰霉病是造成农业生产重大损失的毁灭性疾病,灰霉病菌是一种坏死性模型真菌植物病原体。膜蛋白是杀菌剂的重要靶标,也是杀菌剂产品研发的热点。武义恩辛影响灰霉病菌的通透性和致病性,平行反应监测揭示了膜蛋白Bcsdr2的缔合,并阐明了五味子素的抑菌机理。在目前的工作中,我们产生并表征了ΔBcsdr2缺失,并补充了突变的B.cinerea菌株。ΔBcsdr2缺失突变体表现出生物膜丢失和溶解,草莓和葡萄果实坏死定植减少说明了它们的功能活性。Bcsdr2的靶向缺失也阻断了菌丝体生长方面的几种表型缺陷,分生孢子和毒力。通过靶向基因互补恢复所有表型缺陷。定量实时RT-PCR结果也支持了Bcsdr2在生物膜和致病性中的作用,结果表明,磷脂酰丝氨酸脱羧酶合成基因Bcpsd和几丁质合酶基因BcCHSVII在ΔBcsdr2菌株的感染早期被下调。结果表明,Bcsdr2在调节灰霉病菌的各种细胞过程中起着重要作用。要点:•乌依恩辛抑制灰白芽孢杆菌的机制与膜蛋白密切相关。•Wuyiencin可以下调灰霉病中膜蛋白Bcsdr2的表达。•Bcsdr2参与调节灰霉病毒力,成长和发展。
    Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    病原体相关分子模式(PAMP)的宿主识别,β-1,3-葡聚糖,在抗真菌免疫中起主要作用。β-1,3-葡聚糖是机会性病原体白色念珠菌的内细胞壁的必需成分。大多数β-1,3-葡聚糖被甘露聚糖原纤维的外细胞壁层屏蔽,但有些会暴露在细胞表面。响应宿主信号,如乳酸,白色念珠菌从其细胞表面刮掉暴露的β-1,3-葡聚糖,从而降低先天免疫细胞识别和杀死真菌的能力。我们已经使用条形码xog1和eng1突变体组来比较分泌的β-葡聚糖酶Xog1和Eng1在体外和体内对白色念珠菌的影响。Fc-dectin-1染色菌株的流式细胞术显示,Eng1在乳酸诱导的β-1,3-葡聚糖掩蔽中起着更大的作用。透射电子显微镜和应力分析显示,Eng1和Xog1都不是细胞壁维持所必需的,但是两种酶的失活都会损害真菌对肠道和阴道上皮细胞的粘附。竞争性条形码测序表明Eng1和Xog1均不强烈影响小鼠中全身感染或阴道定植期间的白色念珠菌适应性。然而,XOG1的缺失增强了肠道定植期间的白色念珠菌适应性。我们得出的结论是,Eng1和Xog1都对白色念珠菌细胞表面产生微妙的影响,从而影响真菌对宿主细胞的粘附,并影响某些宿主生态位中的真菌定植。
    Host recognition of the pathogen-associated molecular pattern (PAMP), β-1,3-glucan, plays a major role in antifungal immunity. β-1,3-glucan is an essential component of the inner cell wall of the opportunistic pathogen Candida albicans. Most β-1,3-glucan is shielded by the outer cell wall layer of mannan fibrils, but some can become exposed at the cell surface. In response to host signals such as lactate, C. albicans shaves the exposed β-1,3-glucan from its cell surface, thereby reducing the ability of innate immune cells to recognise and kill the fungus. We have used sets of barcoded xog1 and eng1 mutants to compare the impacts of the secreted β-glucanases Xog1 and Eng1 upon C. albicans in vitro and in vivo. Flow cytometry of Fc-dectin-1-stained strains revealed that Eng1 plays the greater role in lactate-induced β-1,3-glucan masking. Transmission electron microscopy and stress assays showed that neither Eng1 nor Xog1 are essential for cell wall maintenance, but the inactivation of either enzyme compromised fungal adhesion to gut and vaginal epithelial cells. Competitive barcode sequencing suggested that neither Eng1 nor Xog1 strongly influence C. albicans fitness during systemic infection or vaginal colonisation in mice. However, the deletion of XOG1 enhanced C. albicans fitness during gut colonisation. We conclude that both Eng1 and Xog1 exert subtle effects on the C. albicans cell surface that influence fungal adhesion to host cells and that affect fungal colonisation in certain host niches.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    来自人类真菌病原体的细胞外囊泡(EV)与真菌毒力有关,然而,对它们在宿主-病原体相互作用中的作用知之甚少。由于缺乏可用于监测生物系统中的EV分离和跟踪的真菌EV的特定标记,因此进展受到阻碍。在这里,我们报告了SUR7基因敲除对生产的影响,属性,以及电动汽车在白色念珠菌毒力中的作用。Sur7是Can1(MCC)复合物的膜隔室的组分,并且富集在来自白色念珠菌和其他真菌物种的EV中。MCC是一种质膜复合物,与eisosome一起,细胞质蛋白复合物,是质膜组织和质膜相关过程的关键调节剂。SUR7敲除菌株产生比具有不同蛋白质和碳水化合物货物的野生型(WT)更小的EV。此外,在念珠菌发病机制中具有已知作用的蛋白质存在于WTEV中,而在sur7ΔEV中缺失或减少。我们证明,sur7Δ细胞的毒力降低可以用WT菌株的EV部分恢复。这些发现证明了Sur7样蛋白在真菌中EV生物发生中的重要性,并增强了我们对真菌EV在人类发病机理中的作用的理解。
    Extracellular vesicles (EVs) from human fungal pathogens have been implicated in fungal virulence, yet little is known about their role in the host-pathogen interaction. Progress has been hampered by the lack of a specific marker for fungal EVs that can be used to monitor EV isolation and tracking in biological systems. Here we report the effect of a SUR7 gene knockout on the production, properties, and role of EVs in the virulence of Candida albicans. Sur7 is a component of the membrane compartment of Can1 (MCC) complex and is enriched in the EVs from C. albicans and other fungal species. MCC is a plasma membrane complex which together with the eisosome, a cytoplasmic protein complex, is a key regulator in plasma membrane organisation and plasma membrane associated processes. The SUR7 knockout strain produces smaller EVs than the wild-type (WT) with different protein and carbohydrate cargos. Furthermore, proteins with known roles in Candida pathogenesis were present in WT EVs and absent or diminished in the sur7Δ EVs. We demonstrate that the reduced virulence of the sur7Δ cells can be partially restored with EVs from a WT strain. These findings demonstrate the importance of Sur7-like proteins in the biogenesis of EVs in fungi and enhance our understanding of the role of fungal EVs in human pathogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结核分枝杆菌的基因组编码大量的毒素-抗毒素系统。在本研究中,已经对属于TA系统的MenAT亚家族的MenT3和MenT4毒素进行了功能表征。我们证明了这些毒素的异位表达抑制了细菌的生长,这在它们的同源抗毒素共表达后得以挽救。这里,我们表明,同时缺失menT3和menT4导致暴露于氧化应激后,豚鼠和小鼠的结核分枝杆菌易感性增强,生长减弱。我们观察到,与亲本菌株相比,在ΔmenT4ΔT3的对数中期培养物中,编码细胞内生长必需或必需的蛋白质的转录本表达降低。Further,与亲本菌株感染的小鼠相比,ΔmenT4ΔT3感染的小鼠的肺组织中涉及有效细菌清除的蛋白质的转录水平增加。我们表明,用ΔmenT4ΔT3免疫小鼠和豚鼠可提供对结核分枝杆菌感染的显着保护。值得注意的是,用ΔmenT4ΔT3免疫小鼠导致增加的抗原特异性TH1偏倚和激活的记忆T细胞应答。我们得出的结论是,MenT3和MenT4对结核分枝杆菌致病性很重要,缺乏menT3和menT4的菌株有可能作为候选疫苗进一步探索。
    The genome of Mycobacterium tuberculosis encodes for a large repertoire of toxin-antitoxin systems. In the present study, MenT3 and MenT4 toxins belonging to MenAT subfamily of TA systems have been functionally characterized. We demonstrate that ectopic expression of these toxins inhibits bacterial growth and this is rescued upon co-expression of their cognate antitoxins. Here, we show that simultaneous deletion of menT3 and menT4 results in enhanced susceptibility of M. tuberculosis upon exposure to oxidative stress and attenuated growth in guinea pigs and mice. We observed reduced expression of transcripts encoding for proteins that are essential or required for intracellular growth in mid-log phase cultures of ΔmenT4ΔT3 compared to parental strain. Further, the transcript levels of proteins involved in efficient bacterial clearance were increased in lung tissues of ΔmenT4ΔT3 infected mice relative to parental strain infected mice. We show that immunization of mice and guinea pigs with ΔmenT4ΔT3 confers significant protection against M. tuberculosis infection. Remarkably, immunization of mice with ΔmenT4ΔT3 results in increased antigen-specific TH1 bias and activated memory T cell response. We conclude that MenT3 and MenT4 are important for M. tuberculosis pathogenicity and strains lacking menT3 and menT4 have the potential to be explored further as vaccine candidates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    传染性胰腺坏死病毒(IPNV)在全球范围内造成经济损失,死亡率差异很大。尤其是虹鳟鱼.该病毒具有双链双链RNA基因组,称为A和B段。确定了来自土耳其的9个虹鳟鱼分离株的新完整基因组序列,并进行了系统发育分析,鉴定全部为基因型5(血清型Sp)。在10年的时间内,确定了VP2从P217T221A247(PTA)到PTEP217T221E247的扩展致病性基序的时间依赖性变化。对来自土耳其和伊朗的99个IPNV序列的更广泛分析显示,从2007年到2017年出现了PTE的主题,到2013年在鱼苗中引起了显着的发病率。事实上,PTA基序的位移,IPNV分离株中的PTE基序似乎与2013年虹鳟鱼的生产高峰有关。额外的CAI分析提供了更多的证据,这表明土耳其的虹鳟鱼文化对IPNV的演变有影响。
    Infectious pancreatic necrosis virus (IPNV) causes economic losses with a highly variable mortality rate worldwide, especially in rainbow trout. The virus has a double-stranded bi-partite RNA genome designated segment A and B. New complete genome sequences of nine rainbow trout isolates from Turkey were determined and subjected to phylogenetic analysis, identifying all as genotype 5 (serotype Sp). A time-dependent change in the extended pathogenicity motif of VP2 from P217T221A247 (PTA) to PTE P217T221E247 over a period of 10 years was identified. A wider analysis of 99 IPNV sequences from Turkey and Iran revealed the emergence of the motif PTE from 2007 to 2017, inducing significant morbidity in fry by 2013. In fact, displacement of the PTA motif, by the PTE motif in IPNV isolates appeared to be connected to a production peak of rainbow trout in 2013. An additional CAI analysis provided more evidence, indicating that rainbow trout culture in Turkey has an influence on the evolution of IPNV.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号