antibiotic discovery

  • 文章类型: Journal Article
    由于细菌遗传因素与抗生素滥用等外部影响之间的复杂相互作用,抗生素耐药性对全球公共卫生构成重大威胁。人工智能(AI)提供了解决这一危机的创新策略。例如,人工智能可以分析基因组数据以早期检测抗性标记,能够进行早期干预。此外,人工智能支持的决策支持系统可以通过根据患者数据和局部耐药模式推荐最有效的治疗方法来优化抗生素的使用。人工智能可以通过预测新化合物的功效和识别潜在的抗菌剂来加速药物发现。虽然取得了进展,挑战依然存在,包括数据质量,模型可解释性,和现实世界的实现。将人工智能与其他新兴技术相结合的多学科方法,比如合成生物学和纳米医学,可以为有效预防和减轻抗菌素耐药性铺平道路,为后代保留抗生素的功效。
    Antibiotic resistance poses a significant threat to global public health due to complex interactions between bacterial genetic factors and external influences such as antibiotic misuse. Artificial intelligence (AI) offers innovative strategies to address this crisis. For example, AI can analyze genomic data to detect resistance markers early on, enabling early interventions. In addition, AI-powered decision support systems can optimize antibiotic use by recommending the most effective treatments based on patient data and local resistance patterns. AI can accelerate drug discovery by predicting the efficacy of new compounds and identifying potential antibacterial agents. Although progress has been made, challenges persist, including data quality, model interpretability, and real-world implementation. A multidisciplinary approach that integrates AI with other emerging technologies, such as synthetic biology and nanomedicine, could pave the way for effective prevention and mitigation of antimicrobial resistance, preserving the efficacy of antibiotics for future generations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Published Erratum
    [这更正了文章DOI:10.3389/fimmu.202.921483。].
    [This corrects the article DOI: 10.3389/fimmu.2022.921483.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在他1945年获得诺贝尔奖的演讲中,亚历山大·弗莱明爵士警告说,如果不努力采取必要的预防措施,就会出现抗菌素耐药性(AMR)。随着AMR日益增长的威胁继续笼罩着人类,我们必须期待替代诊断工具和预防措施,以阻止全球迫在眉睫的经济崩溃和无数的死亡率。在此类工具/管道的框架内集成机器学习(ML)方法提供了一个有希望的途径,提供了前所未有的见解,以抵抗的潜在机制,并使开发更有针对性和有效的治疗。本文探讨了ML在预测和理解AMR中的应用,强调其在彻底改变医疗保健实践方面的潜力。从利用监督学习方法分析抗生素抗性的遗传特征到开发工具和数据库,如综合抗生素耐药性数据库(CARD),ML正在积极塑造AMR研究的未来。然而,ML在这个领域的成功实施并非没有挑战。对高质量数据的依赖,过度拟合的风险,模型选择,训练数据中的潜在偏差是必须系统地解决的问题。尽管面临这些挑战,ML和生物医学研究之间的协同作用在对抗日益增长的抗生素耐药性威胁方面显示出巨大的前景.
    In his 1945 Nobel Prize acceptance speech, Sir Alexander Fleming warned of antimicrobial resistance (AMR) if the necessary precautions were not taken diligently. As the growing threat of AMR continues to loom over humanity, we must look forward to alternative diagnostic tools and preventive measures to thwart looming economic collapse and untold mortality worldwide. The integration of machine learning (ML) methodologies within the framework of such tools/pipelines presents a promising avenue, offering unprecedented insights into the underlying mechanisms of resistance and enabling the development of more targeted and effective treatments. This paper explores the applications of ML in predicting and understanding AMR, highlighting its potential in revolutionizing healthcare practices. From the utilization of supervised-learning approaches to analyze genetic signatures of antibiotic resistance to the development of tools and databases, such as the Comprehensive Antibiotic Resistance Database (CARD), ML is actively shaping the future of AMR research. However, the successful implementation of ML in this domain is not without challenges. The dependence on high-quality data, the risk of overfitting, model selection, and potential bias in training data are issues that must be systematically addressed. Despite these challenges, the synergy between ML and biomedical research shows great promise in combating the growing menace of antibiotic resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    铜绿假单胞菌通过诱导脂多糖(LPS)表面修饰的表达来响应亚致死性抗菌暴露,这些修饰掩盖了抗生素结合位点并有助于外膜(OM)的修复和抗性。我们在生物传感器方法中利用这些膜损伤响应操纵子,用于发现专门针对OM的新抗菌剂。pmr(多粘菌素抗性;氨基阿拉伯糖LPS修饰)和speD2E2(亚精胺合成)操纵子的染色体转录luxCDABE报告基因由经过验证的外膜作用剂(包括阳离子抗菌肽)诱导,阳离子螯合剂,抗坏血酸,洗涤剂,和细胞壁合成抑制剂环丝氨酸和杆菌肽。为了确定干扰OM的抗菌剂的新来源,我们使用这些OM损伤响应性生物传感器来筛选一组真菌培养上清液的新型抗菌和生物传感器活性。生物传感器活性用于确定从真菌上清液产生抗微生物剂的最佳时间点,并指导尺寸排阻色谱后活性级分的纯化。中药植物的水和乙醇提取物也被证明是生物传感器活性的来源。病原体盒是一个由400名成员组成的潜在抗菌药物库,但是这些化合物都没有诱导我们的OM损伤生物传感器。这本小说,敏感,基于细胞的筛选试验有可能在未来发现特异性靶向外膜的先导化合物,这是抗生素进入革兰氏阴性细菌的重要障碍。重要的是,需要新的方法来发现新的抗菌药物,特别是针对革兰氏阴性外膜的抗生素。通过利用细菌感知和对外膜(OM)损伤的反应,我们使用了一种由多粘菌素抗性基因转录报告基因组成的生物传感器方法来筛选天然产物和一个小的药物库,用于生物传感器活性,表明对OM的损害。导致多粘菌素抗性基因诱导的多种抗菌化合物,这与外膜损伤相关,建议这些LPS和表面修饰也在亚致死暴露的短期修复中起作用,并且是针对广泛的膜应激条件所必需的。
    OBJECTIVE: New approaches are needed to discover novel antimicrobials, particularly antibiotics that target the Gram-negative outer membrane. By exploiting bacterial sensing and responses to outer membrane (OM) damage, we used a biosensor approach consisting of polymyxin resistance gene transcriptional reporters to screen natural products and a small drug library for biosensor activity that indicates damage to the OM. The diverse antimicrobial compounds that cause induction of the polymyxin resistance genes, which correlates with outer membrane damage, suggest that these LPS and surface modifications also function in short-term repair to sublethal exposure and are required against broad membrane stress conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多抗微生物药物耐药性感染缺乏可用的治疗方法凸显了对抗生素发现创新的关键需求。肽是一种被低估的抗生素支架,因为它们经常遭受蛋白水解不稳定性和对人类细胞的毒性。使体内使用具有挑战性。探讨与血清活性相关的序列因子,我们采用抗菌展示技术来筛选直接在人血清中具有抗菌潜力的肽大环化合物库。我们鉴定了数十种新的大环肽抗生素序列,并发现我们文库中的血清活性受肽长度的影响。阳离子电荷,和存在的二硫键的数量。有趣的是,我们最活跃的铅肽的优化版本渗透革兰氏阴性细菌的外膜而没有强烈的内膜破坏,并缓慢杀死细菌,同时引起细胞伸长。这与传统的阳离子抗菌肽形成对比,通过裂解两个细菌膜迅速杀死。值得注意的是,这种优化的变体对哺乳动物细胞无毒,并保留其在体内的功能,暗示治疗的希望。我们的结果支持在筛选保留体内功能的抗微生物活性的肽时使用更生理相关的条件。
    The lack of available treatments for many antimicrobial-resistant infections highlights the critical need for antibiotic discovery innovation. Peptides are an underappreciated antibiotic scaffold because they often suffer from proteolytic instability and toxicity toward human cells, making in vivo use challenging. To investigate sequence factors related to serum activity, we adapt an antibacterial display technology to screen a library of peptide macrocycles for antibacterial potential directly in human serum. We identify dozens of new macrocyclic peptide antibiotic sequences and find that serum activity within our library is influenced by peptide length, cationic charge, and the number of disulfide bonds present. Interestingly, an optimized version of our most active lead peptide permeates the outer membrane of Gram-negative bacteria without strong inner-membrane disruption and kills bacteria slowly while causing cell elongation. This contrasts with traditional cationic antimicrobial peptides, which kill rapidly via lysis of both bacterial membranes. Notably, this optimized variant is not toxic to mammalian cells and retains its function in vivo, suggesting therapeutic promise. Our results support the use of more physiologically relevant conditions when screening peptides for antimicrobial activity which retain in vivo functionality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    革兰氏阴性菌具有击败抗生素的独特能力。它们的最外层,细胞包膜,是一种天然的渗透屏障,包含一系列能够中和大多数现有抗菌剂的抗性蛋白。因此,它的存在为耐药感染的治疗和新抗生素的开发创造了一个主要障碍。尽管这似乎无法穿透的盔甲,深入了解细胞包膜,包括结构性的,功能和系统生物学见解,促进了针对它的努力,最终可以导致新的抗菌疗法的产生。在这篇文章中,我们对细胞包膜的生物学进行了广泛的概述,并重点介绍了在产生损害其功能或生物发生的抑制剂方面的尝试和成功。我们认为,几十年来阻碍抗生素发现的结构尚未开发出针对细菌病原体的新型下一代疗法的设计潜力。
    Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    全球抗菌素耐药性是一场健康危机,可以改变现代医学的面貌。历史上,探索细菌衍生的新型抗菌化合物的多种自然栖息地是一种成功的策略。深海为培育分类学上新颖的生物和探索潜在的化学新颖空间提供了令人兴奋的机会。在这项研究中,先前从深海海绵Phenomenacarpenteri和Hertwigiasp.中分离出的12种细菌的基因组草案。研究了特殊次生代谢物的多样性。此外,早期数据支持由许多这些菌株产生的抗菌抑制物质的生产,包括针对临床相关病原体鲍曼不动杆菌的活性,大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,和金黄色葡萄球菌。提出了12个深海分离株的全基因组草案,其中包括四种潜在的新菌株:嗜冷杆菌。PP-21,链霉菌属。DK15,Dietziasp.PP-33和微球菌。M4NT.在12个基因组草案中,检测到138个生物合成基因簇,其中一半以上与已知的BGC相似度不到50%,这表明这些基因组为阐明新的次级代谢产物提供了令人兴奋的机会。探索属于放线菌门的细菌分离株,Pseudomonadota,和芽孢杆菌来自研究不足的深海海绵提供了机会,寻找新的化学多样性感兴趣的工作在抗生素的发现。
    Global antimicrobial resistance is a health crisis that can change the face of modern medicine. Exploring diverse natural habitats for bacterially-derived novel antimicrobial compounds has historically been a successful strategy. The deep-sea presents an exciting opportunity for the cultivation of taxonomically novel organisms and exploring potentially chemically novel spaces. In this study, the draft genomes of 12 bacteria previously isolated from the deep-sea sponges Phenomena carpenteri and Hertwigia sp. are investigated for the diversity of specialized secondary metabolites. In addition, early data support the production of antibacterial inhibitory substances produced from a number of these strains, including activity against clinically relevant pathogens Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Draft whole-genomes are presented of 12 deep-sea isolates, which include four potentially novel strains: Psychrobacter sp. PP-21, Streptomyces sp. DK15, Dietzia sp. PP-33, and Micrococcus sp. M4NT. Across the 12 draft genomes, 138 biosynthetic gene clusters were detected, of which over half displayed less than 50% similarity to known BGCs, suggesting that these genomes present an exciting opportunity to elucidate novel secondary metabolites. Exploring bacterial isolates belonging to the phylum Actinomycetota, Pseudomonadota, and Bacillota from understudied deep-sea sponges provided opportunities to search for new chemical diversity of interest to those working in antibiotic discovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    抗菌化合物,包括抗生素,已经成为现代医学的基石,能够在高危人群中治疗感染和预防感染,包括那些免疫力低下的人和接受常规外科手术的人。它们的强烈使用,包括人,动物,和植物,导致耐药细菌和真菌的发病率增加,导致迫切需要具有新作用机制的新型抗菌化合物。目前使用的许多抗微生物化合物来源于微生物来源,例如来自真菌产黄青霉的青霉素(被一些人改名为P.rubens)。通过与Aotearoa新西兰皇冠研究所ManaakiWhenua-LandcareResearch的合作,我们可以获得数千种真菌培养物的集合,称为国际植物微生物集(ICMP)。ICMP包含已知的和新的物种,它们的抗微生物活性尚未被广泛测试。初步筛选ICMP分离株对大肠杆菌和金黄色葡萄球菌的活性,使我们对ICMP477感兴趣,ICMP477是土壤中居住的真菌的分离株,土曲霉.在我们对土曲霉次级代谢产物的调查中,通过提取,分馏,和净化,我们分离出9种已知的天然产物.我们评估了所选化合物对各种细菌和真菌的生物活性,并发现土壤酶(1)对重要的人类病原体新生隐球菌具有有效的活性。
    Antimicrobial compounds, including antibiotics, have been a cornerstone of modern medicine being able to both treat infections and prevent infections in at-risk people, including those who are immune-compromised and those undergoing routine surgical procedures. Their intense use, including in people, animals, and plants, has led to an increase in the incidence of resistant bacteria and fungi, resulting in a desperate need for novel antimicrobial compounds with new mechanisms of action. Many antimicrobial compounds in current use originate from microbial sources, such as penicillin from the fungus Penicillium chrysogenum (renamed by some as P. rubens). Through a collaboration with Aotearoa New Zealand Crown Research Institute Manaaki Whenua-Landcare Research we have access to a collection of thousands of fungal cultures known as the International Collection of Microorganisms from Plants (ICMP). The ICMP contains both known and novel species which have not been extensively tested for their antimicrobial activity. Initial screening of ICMP isolates for activity against Escherichia coli and Staphylococcus aureus directed our interest towards ICMP 477, an isolate of the soil-inhabiting fungus, Aspergillus terreus. In our investigation of the secondary metabolites of A. terreus, through extraction, fractionation, and purification, we isolated nine known natural products. We evaluated the biological activity of selected compounds against various bacteria and fungi and discovered that terrein (1) has potent activity against the important human pathogen Cryptococcus neoformans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管COVID-19吸引了大部分公共卫生关注,抗生素耐药性(AMR)尚未消失。为了防止抗性微生物在动物或环境水库中的逃逸,需要“一种健康方法”。在COVID-19的这种情况下,AMR可能受到抗生素不当或过度使用的影响。用于消毒的抗微生物剂和杀生物剂的使用增加可能增加了AMR的患病率。抗生素已根据经验在COVID-19患者中使用,以避免或预防细菌合并感染或重复感染。另一方面,预防COVID-19传播的措施可能降低了出现多药耐药微生物的风险.由于我们目前没有针对SARS-CoV-2的灭菌疫苗,因此该病毒仍可能在生物体中繁殖,并且可能发生新的突变。因此,存在出现新变体的风险。天然来源的抗感染药,如抗体和抗菌肽(AMP),在抗击传染病方面非常有前途,因为它们不太可能产生抗药性,尽管仍需要进一步调查。
    Although COVID-19 has captured most of the public health attention, antimicrobial resistance (AMR) has not disappeared. To prevent the escape of resistant microorganisms in animals or environmental reservoirs a \"one health approach\" is desirable. In this context of COVID-19, AMR has probably been affected by the inappropriate or over-use of antibiotics. The increased use of antimicrobials and biocides for disinfection may have enhanced the prevalence of AMR. Antibiotics have been used empirically in patients with COVID-19 to avoid or prevent bacterial coinfection or superinfections. On the other hand, the measures to prevent the transmission of COVID-19 could have reduced the risk of the emergence of multidrug-resistant microorganisms. Since we do not currently have a sterilizing vaccine against SARS-CoV-2, the virus may still multiply in the organism and new mutations may occur. As a consequence, there is a risk of the appearance of new variants. Nature-derived anti-infective agents, such as antibodies and antimicrobial peptides (AMPs), are very promising in the fight against infectious diseases, because they are less likely to develop resistance, even though further investigation is still required.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在1940年代至1960年代发现抗生素的黄金时代,见证了许多不同类别抗生素的开发和部署。彻底改变了医学领域。从那时起,我们发现新型结构类别或机制的抗生素的能力未能跟上日益增长的抗生素耐药性威胁.最近,基因组学和化学生物学交叉的进步使得人们能够更好地定义基本基因靶标的脆弱性,开发复杂的全细胞化学筛选方法,早期揭示目标生物学,并更有效地阐明小分子靶标和作用方式。这些新技术有可能扩大候选抗生素的化学多样性,以及目标的广度。我们说明了如何整合基因组学和化学生物学的最新工具,以更好地了解病原体的脆弱性和抗生素机制,从而为抗生素发现的新时代提供信息。
    The golden age of antibiotic discovery in the 1940s-1960s saw the development and deployment of many different classes of antibiotics, revolutionizing the field of medicine. Since that time, our ability to discover antibiotics of novel structural classes or mechanisms has not kept pace with the ever-growing threat of antibiotic resistance. Recently, advances at the intersection of genomics and chemical biology have enabled efforts to better define the vulnerabilities of essential gene targets, to develop sophisticated whole-cell chemical screening methods that reveal target biology early, and to elucidate small molecule targets and modes of action more effectively. These new technologies have the potential to expand the chemical diversity of antibiotic candidates, as well as the breadth of targets. We illustrate how the latest tools of genomics and chemical biology are being integrated to better understand pathogen vulnerabilities and antibiotic mechanisms in order to inform a new era of antibiotic discovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号