antibiotic discovery

  • 文章类型: Journal Article
    近年来,抗生素耐药性已成为威胁人类健康的最严重威胁之一。为了应对微生物对目前可用抗生素的耐药性增加,必须开发新的抗生素或探索对抗抗生素耐药性的新方法。抗菌肽(AMPs)在这方面显示出相当大的前景,因为微生物对它们产生低抗性或没有抗性。AMPs的发现和发展仍然面临许多障碍,例如寻找目标,开发化验,识别命中和线索,这是耗时的过程,很难进入市场。然而,随着基因组挖掘的出现,使用BAGEL等工具可以有效地发现新的抗生素,antiSMASH,RODEO,等。,为将来更好地治疗疾病提供希望。基因组挖掘中使用的计算方法自动检测和注释基因组数据中的生物合成基因簇,使其成为天然产品发现的有用工具。这篇评论旨在揭示历史,多样性,和AMP的作用机制以及通过传统和基因组挖掘策略确定的新AMP的数据。它进一步证实了一些AMP临床试验的各个阶段,以及专门为AMP发现而构建的基因组挖掘数据库和工具的概述。鉴于最近的进展,很明显,靶向基因组挖掘是希望的灯塔,提供了巨大的潜力,以加快发现新的抗菌药物。
    Antibiotic resistance has become one of the most serious threats to human health in recent years. In response to the increasing microbial resistance to the antibiotics currently available, it is imperative to develop new antibiotics or explore new approaches to combat antibiotic resistance. Antimicrobial peptides (AMPs) have shown considerable promise in this regard, as the microbes develop low or no resistance against them. The discovery and development of AMPs still confront numerous obstacles such as finding a target, developing assays, and identifying hits and leads, which are time-consuming processes, making it difficult to reach the market. However, with the advent of genome mining, new antibiotics could be discovered efficiently using tools such as BAGEL, antiSMASH, RODEO, etc., providing hope for better treatment of diseases in the future. Computational methods used in genome mining automatically detect and annotate biosynthetic gene clusters in genomic data, making it a useful tool in natural product discovery. This review aims to shed light on the history, diversity, and mechanisms of action of AMPs and the data on new AMPs identified by traditional as well as genome mining strategies. It further substantiates the various phases of clinical trials for some AMPs, as well as an overview of genome mining databases and tools built expressly for AMP discovery. In light of the recent advancements, it is evident that targeted genome mining stands as a beacon of hope, offering immense potential to expedite the discovery of novel antimicrobials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于细菌遗传因素与抗生素滥用等外部影响之间的复杂相互作用,抗生素耐药性对全球公共卫生构成重大威胁。人工智能(AI)提供了解决这一危机的创新策略。例如,人工智能可以分析基因组数据以早期检测抗性标记,能够进行早期干预。此外,人工智能支持的决策支持系统可以通过根据患者数据和局部耐药模式推荐最有效的治疗方法来优化抗生素的使用。人工智能可以通过预测新化合物的功效和识别潜在的抗菌剂来加速药物发现。虽然取得了进展,挑战依然存在,包括数据质量,模型可解释性,和现实世界的实现。将人工智能与其他新兴技术相结合的多学科方法,比如合成生物学和纳米医学,可以为有效预防和减轻抗菌素耐药性铺平道路,为后代保留抗生素的功效。
    Antibiotic resistance poses a significant threat to global public health due to complex interactions between bacterial genetic factors and external influences such as antibiotic misuse. Artificial intelligence (AI) offers innovative strategies to address this crisis. For example, AI can analyze genomic data to detect resistance markers early on, enabling early interventions. In addition, AI-powered decision support systems can optimize antibiotic use by recommending the most effective treatments based on patient data and local resistance patterns. AI can accelerate drug discovery by predicting the efficacy of new compounds and identifying potential antibacterial agents. Although progress has been made, challenges persist, including data quality, model interpretability, and real-world implementation. A multidisciplinary approach that integrates AI with other emerging technologies, such as synthetic biology and nanomedicine, could pave the way for effective prevention and mitigation of antimicrobial resistance, preserving the efficacy of antibiotics for future generations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    迫切需要新型抗生素来应对抗生素耐药性危机。我们提出了一种基于机器学习的方法来预测全球微生物组中的抗菌肽(AMPs),并利用来自环境和宿主相关栖息地的63,410个宏基因组和87,920个原核基因组的庞大数据集来创建AMPSphere。一个全面的目录,包括863,498个非冗余肽,其中很少有与现有数据库匹配的数据库。AMPSphere提供了对肽的进化起源的见解,包括较长序列的复制或基因截断,我们观察到AMP的产生因栖息地而异。为了验证我们的预测,我们在体外和体内合成并测试了100种针对临床相关耐药病原体和人类肠道共生的AMP。总共有79个肽是有活性的,有63种靶向病原体。这些活性AMP通过破坏细菌膜而表现出抗菌活性。总之,我们的方法鉴定了近一百万个原核AMP序列,抗生素发现的开放获取资源。
    Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在绝大多数细菌中,原生动物和植物,甲基赤藓糖醇磷酸(MEP)途径用于合成异戊烯基二磷酸(IDP)和二甲基烯丙基二磷酸(DMADP),它们是类异戊二烯的前体。类异戊二烯,如胆固醇和辅酶Q,在生理活动中发挥各种关键作用,包括细胞膜的形成,蛋白质降解,细胞凋亡,和转录调控。相比之下,人类使用甲羟戊酸(MVA)途径生产IDP和DMADP,MEP途径中的蛋白质对抗菌剂具有吸引力。该途径由七个连续的酶促反应组成,其中4-二磷酸-2C-甲基-D-赤藓糖醇合成酶(IspD)和2C-甲基-D-赤藓糖醇2,4-环二磷酸合成酶(IspF)催化第三和第五步,分别。在这项研究中,我们表征了幽门螺杆菌IspDF和鲍曼不动杆菌IspD的酶活性和蛋白质结构。然后,使用基于直接相互作用的热转移测定,我们对已批准的药物库进行了化合物筛选,鉴定出27种可能与AbIspD结合的化合物.其中,两种天然产物,迷迭香酸和丹参酮IIA磺酸钠,对HpIspDF和AbIspD表现出抑制活性,通过与其中一种基质竞争,MEP。此外,丹参酮IIA磺酸钠也证明了对幽门螺杆菌的某些抗菌作用。总之,我们从批准的成分中鉴定出两种IspD抑制剂,拓宽了针对MEP途径的抗生素发现范围。
    In a vast majority of bacteria, protozoa and plants, the methylerythritol phosphate (MEP) pathway is utilized for the synthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), which are precursors for isoprenoids. Isoprenoids, such as cholesterol and coenzyme Q, play a variety of crucial roles in physiological activities, including cell-membrane formation, protein degradation, cell apoptosis, and transcription regulation. In contrast, humans employ the mevalonate (MVA) pathway for the production of IDP and DMADP, rendering proteins in the MEP pathway appealing targets for antimicrobial agents. This pathway consists of seven consecutive enzymatic reactions, of which 4-diphosphocytidyl-2C-methyl-D-erythritol synthase (IspD) and 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) catalyze the third and fifth steps, respectively. In this study, we characterized the enzymatic activities and protein structures of Helicobacter pylori IspDF and Acinetobacter baumannii IspD. Then, using the direct interaction-based thermal shift assay, we conducted a compound screening of an approved drug library and identified 27 hit compounds potentially binding to AbIspD. Among them, two natural products, rosmarinic acid and tanshinone IIA sodium sulfonate, exhibited inhibitory activities against HpIspDF and AbIspD, by competing with one of the substrates, MEP. Moreover, tanshinone IIA sodium sulfonate also demonstrated certain antibacterial effects against H. pylori. In summary, we identified two IspD inhibitors from approved ingredients, broadening the scope for antibiotic discovery targeting the MEP pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Published Erratum
    [这更正了文章DOI:10.3389/fimmu.202.921483。].
    [This corrects the article DOI: 10.3389/fimmu.2022.921483.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在他1945年获得诺贝尔奖的演讲中,亚历山大·弗莱明爵士警告说,如果不努力采取必要的预防措施,就会出现抗菌素耐药性(AMR)。随着AMR日益增长的威胁继续笼罩着人类,我们必须期待替代诊断工具和预防措施,以阻止全球迫在眉睫的经济崩溃和无数的死亡率。在此类工具/管道的框架内集成机器学习(ML)方法提供了一个有希望的途径,提供了前所未有的见解,以抵抗的潜在机制,并使开发更有针对性和有效的治疗。本文探讨了ML在预测和理解AMR中的应用,强调其在彻底改变医疗保健实践方面的潜力。从利用监督学习方法分析抗生素抗性的遗传特征到开发工具和数据库,如综合抗生素耐药性数据库(CARD),ML正在积极塑造AMR研究的未来。然而,ML在这个领域的成功实施并非没有挑战。对高质量数据的依赖,过度拟合的风险,模型选择,训练数据中的潜在偏差是必须系统地解决的问题。尽管面临这些挑战,ML和生物医学研究之间的协同作用在对抗日益增长的抗生素耐药性威胁方面显示出巨大的前景.
    In his 1945 Nobel Prize acceptance speech, Sir Alexander Fleming warned of antimicrobial resistance (AMR) if the necessary precautions were not taken diligently. As the growing threat of AMR continues to loom over humanity, we must look forward to alternative diagnostic tools and preventive measures to thwart looming economic collapse and untold mortality worldwide. The integration of machine learning (ML) methodologies within the framework of such tools/pipelines presents a promising avenue, offering unprecedented insights into the underlying mechanisms of resistance and enabling the development of more targeted and effective treatments. This paper explores the applications of ML in predicting and understanding AMR, highlighting its potential in revolutionizing healthcare practices. From the utilization of supervised-learning approaches to analyze genetic signatures of antibiotic resistance to the development of tools and databases, such as the Comprehensive Antibiotic Resistance Database (CARD), ML is actively shaping the future of AMR research. However, the successful implementation of ML in this domain is not without challenges. The dependence on high-quality data, the risk of overfitting, model selection, and potential bias in training data are issues that must be systematically addressed. Despite these challenges, the synergy between ML and biomedical research shows great promise in combating the growing menace of antibiotic resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    铜绿假单胞菌通过诱导脂多糖(LPS)表面修饰的表达来响应亚致死性抗菌暴露,这些修饰掩盖了抗生素结合位点并有助于外膜(OM)的修复和抗性。我们在生物传感器方法中利用这些膜损伤响应操纵子,用于发现专门针对OM的新抗菌剂。pmr(多粘菌素抗性;氨基阿拉伯糖LPS修饰)和speD2E2(亚精胺合成)操纵子的染色体转录luxCDABE报告基因由经过验证的外膜作用剂(包括阳离子抗菌肽)诱导,阳离子螯合剂,抗坏血酸,洗涤剂,和细胞壁合成抑制剂环丝氨酸和杆菌肽。为了确定干扰OM的抗菌剂的新来源,我们使用这些OM损伤响应性生物传感器来筛选一组真菌培养上清液的新型抗菌和生物传感器活性。生物传感器活性用于确定从真菌上清液产生抗微生物剂的最佳时间点,并指导尺寸排阻色谱后活性级分的纯化。中药植物的水和乙醇提取物也被证明是生物传感器活性的来源。病原体盒是一个由400名成员组成的潜在抗菌药物库,但是这些化合物都没有诱导我们的OM损伤生物传感器。这本小说,敏感,基于细胞的筛选试验有可能在未来发现特异性靶向外膜的先导化合物,这是抗生素进入革兰氏阴性细菌的重要障碍。重要的是,需要新的方法来发现新的抗菌药物,特别是针对革兰氏阴性外膜的抗生素。通过利用细菌感知和对外膜(OM)损伤的反应,我们使用了一种由多粘菌素抗性基因转录报告基因组成的生物传感器方法来筛选天然产物和一个小的药物库,用于生物传感器活性,表明对OM的损害。导致多粘菌素抗性基因诱导的多种抗菌化合物,这与外膜损伤相关,建议这些LPS和表面修饰也在亚致死暴露的短期修复中起作用,并且是针对广泛的膜应激条件所必需的。
    OBJECTIVE: New approaches are needed to discover novel antimicrobials, particularly antibiotics that target the Gram-negative outer membrane. By exploiting bacterial sensing and responses to outer membrane (OM) damage, we used a biosensor approach consisting of polymyxin resistance gene transcriptional reporters to screen natural products and a small drug library for biosensor activity that indicates damage to the OM. The diverse antimicrobial compounds that cause induction of the polymyxin resistance genes, which correlates with outer membrane damage, suggest that these LPS and surface modifications also function in short-term repair to sublethal exposure and are required against broad membrane stress conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多抗微生物药物耐药性感染缺乏可用的治疗方法凸显了对抗生素发现创新的关键需求。肽是一种被低估的抗生素支架,因为它们经常遭受蛋白水解不稳定性和对人类细胞的毒性。使体内使用具有挑战性。探讨与血清活性相关的序列因子,我们采用抗菌展示技术来筛选直接在人血清中具有抗菌潜力的肽大环化合物库。我们鉴定了数十种新的大环肽抗生素序列,并发现我们文库中的血清活性受肽长度的影响。阳离子电荷,和存在的二硫键的数量。有趣的是,我们最活跃的铅肽的优化版本渗透革兰氏阴性细菌的外膜而没有强烈的内膜破坏,并缓慢杀死细菌,同时引起细胞伸长。这与传统的阳离子抗菌肽形成对比,通过裂解两个细菌膜迅速杀死。值得注意的是,这种优化的变体对哺乳动物细胞无毒,并保留其在体内的功能,暗示治疗的希望。我们的结果支持在筛选保留体内功能的抗微生物活性的肽时使用更生理相关的条件。
    The lack of available treatments for many antimicrobial-resistant infections highlights the critical need for antibiotic discovery innovation. Peptides are an underappreciated antibiotic scaffold because they often suffer from proteolytic instability and toxicity toward human cells, making in vivo use challenging. To investigate sequence factors related to serum activity, we adapt an antibacterial display technology to screen a library of peptide macrocycles for antibacterial potential directly in human serum. We identify dozens of new macrocyclic peptide antibiotic sequences and find that serum activity within our library is influenced by peptide length, cationic charge, and the number of disulfide bonds present. Interestingly, an optimized version of our most active lead peptide permeates the outer membrane of Gram-negative bacteria without strong inner-membrane disruption and kills bacteria slowly while causing cell elongation. This contrasts with traditional cationic antimicrobial peptides, which kill rapidly via lysis of both bacterial membranes. Notably, this optimized variant is not toxic to mammalian cells and retains its function in vivo, suggesting therapeutic promise. Our results support the use of more physiologically relevant conditions when screening peptides for antimicrobial activity which retain in vivo functionality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    革兰氏阴性菌具有击败抗生素的独特能力。它们的最外层,细胞包膜,是一种天然的渗透屏障,包含一系列能够中和大多数现有抗菌剂的抗性蛋白。因此,它的存在为耐药感染的治疗和新抗生素的开发创造了一个主要障碍。尽管这似乎无法穿透的盔甲,深入了解细胞包膜,包括结构性的,功能和系统生物学见解,促进了针对它的努力,最终可以导致新的抗菌疗法的产生。在这篇文章中,我们对细胞包膜的生物学进行了广泛的概述,并重点介绍了在产生损害其功能或生物发生的抑制剂方面的尝试和成功。我们认为,几十年来阻碍抗生素发现的结构尚未开发出针对细菌病原体的新型下一代疗法的设计潜力。
    Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    全球抗菌素耐药性是一场健康危机,可以改变现代医学的面貌。历史上,探索细菌衍生的新型抗菌化合物的多种自然栖息地是一种成功的策略。深海为培育分类学上新颖的生物和探索潜在的化学新颖空间提供了令人兴奋的机会。在这项研究中,先前从深海海绵Phenomenacarpenteri和Hertwigiasp.中分离出的12种细菌的基因组草案。研究了特殊次生代谢物的多样性。此外,早期数据支持由许多这些菌株产生的抗菌抑制物质的生产,包括针对临床相关病原体鲍曼不动杆菌的活性,大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,和金黄色葡萄球菌。提出了12个深海分离株的全基因组草案,其中包括四种潜在的新菌株:嗜冷杆菌。PP-21,链霉菌属。DK15,Dietziasp.PP-33和微球菌。M4NT.在12个基因组草案中,检测到138个生物合成基因簇,其中一半以上与已知的BGC相似度不到50%,这表明这些基因组为阐明新的次级代谢产物提供了令人兴奋的机会。探索属于放线菌门的细菌分离株,Pseudomonadota,和芽孢杆菌来自研究不足的深海海绵提供了机会,寻找新的化学多样性感兴趣的工作在抗生素的发现。
    Global antimicrobial resistance is a health crisis that can change the face of modern medicine. Exploring diverse natural habitats for bacterially-derived novel antimicrobial compounds has historically been a successful strategy. The deep-sea presents an exciting opportunity for the cultivation of taxonomically novel organisms and exploring potentially chemically novel spaces. In this study, the draft genomes of 12 bacteria previously isolated from the deep-sea sponges Phenomena carpenteri and Hertwigia sp. are investigated for the diversity of specialized secondary metabolites. In addition, early data support the production of antibacterial inhibitory substances produced from a number of these strains, including activity against clinically relevant pathogens Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Draft whole-genomes are presented of 12 deep-sea isolates, which include four potentially novel strains: Psychrobacter sp. PP-21, Streptomyces sp. DK15, Dietzia sp. PP-33, and Micrococcus sp. M4NT. Across the 12 draft genomes, 138 biosynthetic gene clusters were detected, of which over half displayed less than 50% similarity to known BGCs, suggesting that these genomes present an exciting opportunity to elucidate novel secondary metabolites. Exploring bacterial isolates belonging to the phylum Actinomycetota, Pseudomonadota, and Bacillota from understudied deep-sea sponges provided opportunities to search for new chemical diversity of interest to those working in antibiotic discovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号