Histone

Histone
  • 文章类型: Journal Article
    组蛋白通过多种机制影响基因表达,包括通过与组蛋白变体交换。最近的发现将组蛋白变异与神经系统疾病联系起来,然而,很少有人在大脑中得到很好的研究。最值得注意的是,广泛表达的H2B变体仍然难以捉摸。我们应用了最近开发的抗体,生化化验,和测序方法,以揭示H2B变体H2BE的广泛表达并定义其在调节染色质结构中的作用,神经元转录,和老鼠的行为。我们发现H2BE在启动子处富集,和一个独特的氨基酸使它能够显着增强染色质的可接近性。Further,我们表明H2BE对突触基因表达和长期记忆至关重要。一起,这些数据揭示了一种将组蛋白变体与染色质可及性联系起来的机制,转录调控,神经元功能,和记忆。这项工作进一步鉴定了广泛表达的H2B变体,并揭示了对基因组结构具有深远影响的单个组蛋白氨基酸。
    Histone proteins affect gene expression through multiple mechanisms, including through exchange with histone variants. Recent findings link histone variants to neurological disorders, yet few are well studied in the brain. Most notably, widely expressed variants of H2B remain elusive. We applied recently developed antibodies, biochemical assays, and sequencing approaches to reveal broad expression of the H2B variant H2BE and defined its role in regulating chromatin structure, neuronal transcription, and mouse behavior. We find that H2BE is enriched at promoters, and a single unique amino acid allows it to dramatically enhance chromatin accessibility. Further, we show that H2BE is critical for synaptic gene expression and long-term memory. Together, these data reveal a mechanism linking histone variants to chromatin accessibility, transcriptional regulation, neuronal function, and memory. This work further identifies a widely expressed H2B variant and uncovers a single histone amino acid with profound effects on genomic structure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    来自中性粒细胞胞外陷阱(NETs)和其他细胞来源的炎性细胞外染色质在COVID-19患者中发现,并可能促进病理。我们确定了核酸内切酶α的肺部给药是否通过清除细胞外染色质来减少全身性炎症。
    符合条件的患者被随机分配(3:1)接受最佳治疗,包括地塞米松(R-BAC)或BAC,每天两次雾化吸入dornasealfa(R-BACDA),持续7天或直至出院。2:1比例的匹配的当代对照(CC-BAC)提供了额外的比较器。主要终点是随着时间的推移C反应蛋白(CRP)的改善,使用重复测量混合模型进行分析,根据基线因素进行调整。
    我们招募了39名可评估的参与者:30名随机分为dornasealfa(R-BACDA),9随机分配至BAC(R-BAC),包括60名CC-BAC参与者。与联合BAC组(T-BAC)相比,Dornasealfa耐受性良好,CRP降低了33%。在R-BAC+DA参与者中,最小二乘法(LS)平均地塞米松后CRP从101.9mg/L降至23.23mg/L,而T-BAC组在7天降低99.5mg/L至34.82mg/L;p=0.01。仅对随机参与者进行亚组和敏感性分析,进一步证实了dornasealfa的抗炎作用。减轻与使用CC-BAC参与者相关的潜在偏见。Dornasealfa使活体出院率增加了63%(HR1.63,95%CI1.01-2.61,p=0.03),淋巴细胞计数增加(LS平均值:1.08vs0.87,p=0.02),循环cf-DNA和凝血病标志物D-二聚体减少(LS平均值:570.78vs1656.96μg/mL,p=0.004)。
    Dornasealfa可减少COVID-19肺炎的致病性炎症,证明了针对细胞外染色质的具有成本效益的疗法的益处。
    LifeArc,呼吸很重要,弗朗西斯·克里克研究所(CRUK,医学研究理事会,惠康信托)。
    NCT04359654。
    UNASSIGNED: Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin.
    UNASSIGNED: Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors.
    UNASSIGNED: We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01-2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 μg/mL, p=0.004).
    UNASSIGNED: Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin.
    UNASSIGNED: LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust).
    UNASSIGNED: NCT04359654.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基因治疗是治疗遗传疾病和癌症最有前途的技术之一。目前基因治疗中最重要的问题是基因传递。病毒和非病毒载体,如脂质体,用于基因传递,有许多限制。我们通过将细胞穿透肽(CPPs)与人组蛋白H4蛋白的DNA结合域结合,开发了新的杂合肽。这些小肽通过它们的组蛋白结构域与DNA分子结合,使CPP部分自由并可用于结合和渗透到细胞中,形成我们命名为“peptosomes”的复合物。我们通过递送携带绿色荧光蛋白基因的质粒并通过荧光显微镜观察其表达来评估几种杂合肽的转染效率。在几种杂合肽中,TM3实现了76%的基因递送效率,与2000年Lipofectamine的52%相比。TM3肽体可能成为重要的基因递送工具,与目前的基因递送剂相比有几个优点。
    Gene therapy is one of the most promising techniques for treating genetic diseases and cancer. The current most important problem in gene therapy is gene delivery. Viral and non-viral vectors like liposomes, used for gene delivery, have many limitations. We have developed new hybrid peptides by combining cell-penetrating peptides (CPPs) with the DNA-binding domain of the human histone H4 protein. These small peptides bind to DNA molecules through their histone domain, leaving the CPP part free and available for binding and penetration into cells, forming complexes that we named \"peptosomes\". We evaluated the transfection efficiency of several hybrid peptides by delivering a plasmid carrying the green fluorescent protein gene and following its expression by fluorescent microscopy. Among several hybrid peptides, TM3 achieved a gene delivery efficiency of 76%, compared to 52% for Lipofectamine 2000. TM3 peptosomes may become important gene delivery tools with several advantages over current gene delivery agents.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞中过量的组蛋白诱导有丝分裂染色体丢失和基因组不稳定,因此对细胞存活有害。在酵母中,过量的组蛋白通过DNA损伤反应因子Rad53介导的蛋白酶体降解。组蛋白表达,因此,在蛋白质水平上受到严格调控。我们对组蛋白基因转录调控的理解还很不完整。在这项研究中,我们发现钙调神经磷酸酶抑制剂治疗会增加组蛋白蛋白水平,转录因子NFATc1(活化T细胞的核因子1)抑制组蛋白转录并作用于钙调磷酸酶的下游。我们进一步揭示了NFATc1与许多组蛋白基因的启动子区域结合,并且组蛋白转录以依赖于细胞内钙水平的方式下调。的确,组蛋白H3的过表达显著抑制细胞增殖。一起来看,这些发现表明NFATc1通过在转录水平抑制组蛋白的表达来防止组蛋白H3积累的有害影响。
    Excess amounts of histones in the cell induce mitotic chromosome loss and genomic instability, and are therefore detrimental to cell survival. In yeast, excess histones are degraded by the proteasome mediated via the DNA damage response factor Rad53. Histone expression, therefore, is tightly regulated at the protein level. Our understanding of the transcriptional regulation of histone genes is far from complete. In this study, we found that calcineurin inhibitor treatment increased histone protein levels, and that the transcription factor NFATc1 (nuclear factor of activated T cells 1) repressed histone transcription and acts downstream of the calcineurin. We further revealed that NFATc1 binds to the promoter regions of many histone genes and that histone transcription is downregulated in a manner dependent on intracellular calcium levels. Indeed, overexpression of histone H3 markedly inhibited cell proliferation. Taken together, these findings suggest that NFATc1 prevents the detrimental effects of histone H3 accumulation by inhibiting expression of histone at the transcriptional level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质甲基化,类似于DNA甲基化,主要涉及靶向含氮侧链的残基和其他残基的翻译后修饰(PTM)。蛋白质精氨酸甲基化,发生在精氨酸残留物上,主要由蛋白质精氨酸甲基转移酶(PRMTs)介导,它们普遍存在于许多生物体中,并且错综复杂地参与许多生物过程的调节。具体来说,PRMT是基因转录调控过程中的关键,和蛋白质功能调节。异常精氨酸甲基化,特别是在组蛋白中,可以诱导基因表达失调,从而导致癌症的发展。PRMT介导的修饰和癌症研究的最新进展对我们对癌症发生和进展中异常修饰的理解产生了深远的影响。这篇综述将提供这些最新进展的明确概述,目的是增加我们对PRMT在进展中的作用及其在癌症治疗中的潜在应用的认识。
    Protein methylation, similar to DNA methylation, primarily involves post-translational modification (PTM) targeting residues of nitrogen-containing side-chains and other residues. Protein arginine methylation, occurred on arginine residue, is mainly mediated by protein arginine methyltransferases (PRMTs), which are ubiquitously present in a multitude of organisms and are intricately involved in the regulation of numerous biological processes. Specifically, PRMTs are pivotal in the process of gene transcription regulation, and protein function modulation. Abnormal arginine methylation, particularly in histones, can induce dysregulation of gene expression, thereby leading to the development of cancer. The recent advancements in modification mediated by PRMTs and cancer research have had a profound impact on our understanding of the abnormal modification involved in carcinogenesis and progression. This review will provide a defined overview of these recent progression, with the aim of augmenting our knowledge on the role of PRMTs in progression and their potential application in cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    高血压,受遗传影响的多方面心血管疾病,表观遗传,和环境因素,在2型糖尿病(T2DM)患者中,冠状动脉疾病(CAD)的发展存在重大风险。表观遗传改变,特别是在组蛋白修饰中,DNA甲基化,和microRNAs,在解开血压调节的复杂分子基础中起着关键作用。这篇综述强调了表观遗传属性与高血压之间的关键相互作用。揭示DNA甲基化的突出,在全球和基因特异性水平上,原发性高血压。此外,组蛋白修饰,包括乙酰化和甲基化,成为与高血压相关的重要表观遗传标记。此外,microRNAs对血压稳态有调节作用,靶向醛固酮和肾素-血管紧张素途径内的关键基因。了解高血压中遗传学和表观遗传学之间复杂的串扰在其与T2DM的相互作用中是特别相关的。其中高血压是CAD发展的显着危险因素。这些发现不仅有助于全面阐明原发性高血压,而且为预防和治疗心血管并发症的创新策略提供了有希望的途径。尤其是在T2DM的背景下。
    Hypertension, a multifaceted cardiovascular disorder influenced by genetic, epigenetic, and environmental factors, poses a significant risk for the development of coronary artery disease (CAD) in individuals with type 2 diabetes mellitus (T2DM). Epigenetic alterations, particularly in histone modifications, DNA methylation, and microRNAs, play a pivotal role in unraveling the complex molecular underpinnings of blood pressure regulation. This review emphasizes the crucial interplay between epigenetic attributes and hypertension, shedding light on the prominence of DNA methylation, both globally and at the gene-specific level, in essential hypertension. Additionally, histone modifications, including acetylation and methylation, emerge as essential epigenetic markers linked to hypertension. Furthermore, microRNAs exert regulatory influence on blood pressure homeostasis, targeting key genes within the aldosterone and renin-angiotensin pathways. Understanding the intricate crosstalk between genetics and epigenetics in hypertension is particularly pertinent in the context of its interaction with T2DM, where hypertension serves as a notable risk factor for the development of CAD. These findings not only contribute to the comprehensive elucidation of essential hypertension but also offer promising avenues for innovative strategies in the prevention and treatment of cardiovascular complications, especially in the context of T2DM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在出生后的心脏肥大,心肌细胞经历有丝分裂退出,依靠DNA复制非依赖性的组蛋白周转机制来维持染色质组织和基因转录。在其他组织中,核小体占据的昼夜节律振荡影响时钟控制的基因表达,提示昼夜节律在组蛋白周转和协调心肌细胞基因表达的时间控制中的作用。阐明主昼夜节律转录因子的作用,Bmal1,在组蛋白周转中,染色质组织,以及新生儿期肌细胞特异性基因表达和细胞生长。Bmal1敲低新生大鼠心室肌细胞(NRVM)减少肌细胞大小,总细胞蛋白质合成,和用血清或α-肾上腺素能激动剂去氧肾上腺素(PE)处理后胎儿肥大基因Nppb的转录。Bmal1的缺失降低了时钟控制基因Per2和Tcap的表达,以及Sik1,一种Bmal1靶标在成人与胚胎心脏中上调。通过MNase-qPCR测量,Bmal1敲低会损害Per2和Sik1启动子的可及性,通过酸溶性染色质级分的代谢标记测量,组蛋白转换受损。Sik1敲低依次减少了心肌细胞的大小,同时抑制Nppb转录和激活Per2转录。将这些变化与染色质重塑联系起来,复制非依赖性组蛋白变体H3.3a的消耗抑制了心肌细胞肥大,并阻止了PE诱导的时钟控制基因转录变化。Bmal1是新生儿心肌细胞生长所必需的,不依赖复制的组蛋白周转,和Sik1启动子处的染色质组织。Sik1代表一种新的时钟控制基因,可协调肥大和时钟控制基因转录的肌细胞生长。不依赖复制的组蛋白周转是心肌细胞中时钟控制基因响应生长刺激的转录重塑所必需的。
    During postnatal cardiac hypertrophy, cardiomyocytes undergo mitotic exit, relying on DNA replication-independent mechanisms of histone turnover to maintain chromatin organization and gene transcription. In other tissues, circadian oscillations in nucleosome occupancy influence clock-controlled gene expression, suggesting a role for the circadian clock in temporal control of histone turnover and coordinated cardiomyocyte gene expression. We sought to elucidate roles for the master circadian transcription factor, Bmal1, in histone turnover, chromatin organization, and myocyte-specific gene expression and cell growth in the neonatal period. Bmal1 knockdown in neonatal rat ventricular myocytes decreased myocyte size, total cellular protein synthesis, and transcription of the fetal hypertrophic gene Nppb after treatment with serum or the α-adrenergic agonist phenylephrine. Depletion of Bmal1 decreased the expression of clock-controlled genes Per2 and Tcap, as well as Sik1, a Bmal1 target upregulated in adult versus embryonic hearts. Bmal1 knockdown impaired Per2 and Sik1 promoter accessibility as measured by micrococcal nuclease-quantitative PCR and impaired histone turnover as measured by metabolic labeling of acid-soluble chromatin fractions. Sik1 knockdown in turn decreased myocyte size, while simultaneously inhibiting natriuretic peptide B transcription and activating Per2 transcription. Linking these changes to chromatin remodeling, depletion of the replication-independent histone variant H3.3a inhibited myocyte hypertrophy and prevented phenylephrine-induced changes in clock-controlled gene transcription. Bmal1 is required for neonatal myocyte growth, replication-independent histone turnover, and chromatin organization at the Sik1 promoter. Sik1 represents a novel clock-controlled gene that coordinates myocyte growth with hypertrophic and clock-controlled gene transcription. Replication-independent histone turnover is required for transcriptional remodeling of clock-controlled genes in cardiac myocytes in response to growth stimuli.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小干扰RNA(siRNA)通过靶向参与癌症发展和进展的特定基因或分子途径作为癌症的治疗具有显著的潜力。将siRNA添加到其他治疗策略中,如光动力疗法(PDT),可以增强抗癌效果,提供协同效益。然而,将siRNA有效递送到靶细胞中仍然是癌症治疗的障碍。在这里,超分子纳米颗粒是通过天然组蛋白和透明质酸的共组装制备的,用于将HMGB1-siRNA和光敏剂氯e6(Ce6)共递送到MCF-7细胞中。所产生的siRNA-Ce6纳米颗粒(siRNA-Ce6NP)具有球形形态并表现出均匀分布。体外实验表明,siRNA-Ce6NPs具有良好的生物相容性,增强细胞摄取,并改善细胞毒性。这些结果表明,通过组蛋白和透明质酸的共组装构建的纳米颗粒作为siRNA和光敏剂共同递送协同治疗的手段具有巨大的前景。
    Small interfering RNA (siRNA) has significant potential as a treatment for cancer by targeting specific genes or molecular pathways involved in cancer development and progression. The addition of siRNA to other therapeutic strategies, like photodynamic therapy (PDT), can enhance the anticancer effects, providing synergistic benefits. Nevertheless, the effective delivery of siRNA into target cells remains an obstacle in cancer therapy. Herein, supramolecular nanoparticles were fabricated via the co-assembly of natural histone and hyaluronic acid for the co-delivery of HMGB1-siRNA and the photosensitizer chlorin e6 (Ce6) into the MCF-7 cell. The produced siRNA-Ce6 nanoparticles (siRNA-Ce6 NPs) have a spherical morphology and exhibit uniform distribution. In vitro experiments demonstrate that the siRNA-Ce6 NPs display good biocompatibility, enhanced cellular uptake, and improved cytotoxicity. These outcomes indicate that the nanoparticles constructed by the co-assembly of histone and hyaluronic acid hold enormous promise as a means of siRNA and photosensitizer co-delivery towards synergetic therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞衰老是一种不可逆的生长停滞,是癌症发生和发展的障碍。组蛋白改变是复制衰老过程中的主要事件之一。然而,对H3.3在细胞衰老中的功能知之甚少。在这里,我们发现H3.3的下调诱导了衰老样表型的生长抑制,如衰老相关的异染色质灶(SAHF)和β-半乳糖苷酶(SA-β-gal)活性。此外,H3.3耗竭诱导了p53/p21抑制途径的衰老样表型。此外,我们鉴定了miR-22-3p,肿瘤抑制性miRNA,作为H3F3B(H3组蛋白,家族3B)基因,该基因是组蛋白变体H3.3,取代了活性基因中的常规H3。因此,我们的结果首次揭示了由H3.3丰度调节的细胞衰老的分子机制。一起来看,我们的研究表明,H3.3在调节细胞衰老中发挥功能作用,是一个有前景的癌症治疗靶点.
    Cellular senescence is an irreversible growth arrest that acts as a barrier to cancer initiation and progression. Histone alteration is one of the major events during replicative senescence. However, little is known about the function of H3.3 in cellular senescence. Here we found that the downregulation of H3.3 induced growth suppression with senescence-like phenotypes such as senescence-associated heterochromatin foci (SAHF) and β-galactosidase (SA-β-gal) activity. Furthermore, H3.3 depletion induced senescence-like phenotypes with the p53/p21-depedent pathway. In addition, we identified miR-22-3p, tumor suppressive miRNA, as an upstream regulator of the H3F3B (H3 histone, family 3B) gene which is the histone variant H3.3 and replaces conventional H3 in active genes. Therefore, our results reveal for the first time the molecular mechanisms for cellular senescence which are regulated by H3.3 abundance. Taken together, our studies suggest that H3.3 exerts functional roles in regulating cellular senescence and is a promising target for cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    表观遗传机制是细胞正常发育的基石,协调哺乳动物细胞中的组织特异性基因表达。在这个复杂的景观畸变驱动基因功能的实质性变化,成为癌症病因和进展的关键。虽然癌症通常被认为是一种遗传性疾病,其当代定义包括与破坏性表观遗传异常交织在一起的遗传改变。这篇综述探讨了DNA甲基化的深刻影响,组蛋白修饰,和基本细胞过程中的非编码RNA。当这些关键的表观遗传机制受到破坏时,它们错综复杂地引导着在看似正常的细胞中获得癌症的6个标志特征。利用解码这些表观遗传复杂性的最新进展带来了巨大的希望,预示着在开发针对由异常表观遗传修饰驱动的癌症的靶向和更有效的治疗方式方面的新时代。
    Epigenetic machinery is a cornerstone in normal cell development, orchestrating tissue-specific gene expression in mammalian cells. Aberrations in this intricate landscape drive substantial changes in gene function, emerging as a linchpin in cancer etiology and progression. While cancer was conventionally perceived as solely a genetic disorder, its contemporary definition encompasses genetic alterations intertwined with disruptive epigenetic abnormalities. This review explores the profound impact of DNA methylation, histone modifications, and noncoding RNAs on fundamental cellular processes. When these pivotal epigenetic mechanisms undergo disruption, they intricately guide the acquisition of the 6 hallmark characteristics of cancer within seemingly normal cells. Leveraging the latest advancements in decoding these epigenetic intricacies holds immense promise, heralding a new era in developing targeted and more efficacious treatment modalities against cancers driven by aberrant epigenetic modifications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号