in vitro cultivation

体外培养
  • 文章类型: Journal Article
    肺泡棘球蚴病被认为是最可能致命的寄生虫人畜共患病之一。然而,多房棘球蚴与宿主相互作用的分子机制知之甚少,阻碍了这种疾病的预防和治疗。由于细胞培养系统用于分子研究的巨大优势,已经进行了许多尝试来建立多房性大肠杆菌的原代细胞培养物。在这项研究中,我们开发了一个简单的,快速,和经济的方法,该方法允许多房性E.我们做了厌氧,低氧(1%O2),常氧,和半厌氧(在密封管中)培养,并发现多房性E.在该系统中培养的子囊泡在厌氧条件下培养8天后明显扩大,而在低氧(1%O2)和常氧条件下培养的囊泡仅显示体积的轻度增加。我们在体外培养的囊泡显示出很强的生存能力,可用于测试抗寄生虫药物,分离原代细胞,感染动物。
    Alveolar echinococcosis is considered to be one of the most potentially lethal parasitic zoonotic diseases. However, the molecular mechanisms by which Echinococcus multilocularis interacts with hosts are poorly understood, hindering the prevention and treatment of this disease. Due to the great advantages of cell culture systems for molecular research, numerous attempts have been made to establish primary cell cultures for E. multilocularis. In this study we developed a simple, rapid, and economical method that allows E. multilocularis metacestode tissue blocks to generate daughter vesicles without the continuous presence of host feeder cells in a regular medium. We performed anaerobic, hypoxic (1% O2), normoxic, and semi-anaerobic (in sealed tubes) cultures and found that E. multilocularis metacestode tissues can produce daughter vesicles only in the sealed tubes after 4 wk of incubation. The daughter vesicles cultivated in this system were remarkably enlarged under anaerobic conditions after 8 days of culture, whereas vesicles cultured under hypoxic (1% O2) and normoxic conditions showed only a mild increase in volume. Our in vitro cultivated vesicles showed strong viability and could be used to test antiparasitic drugs, isolate primary cells, and infect animals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物中的各种次生代谢产物,具有丰富的生物活性,长期以来一直是人类医学的重要来源,食品添加剂,杀虫剂,等。然而,寄主植物的大规模种植消耗土地资源,容易受到病虫害的影响。此外,化学合成的多步和苛刻的性质增加了生产成本,限制了其广泛应用。通过成功的工业生产案例,体外培养和植物的代谢工程显着增强了次生代谢产物的合成。随着合成生物学的进步,更多的研究集中在利用微生物进行异源合成。这篇评论提供了这两个底盘之间的全面比较,从产量和策略的角度评估它们在各种次生代谢物合成中的性能。它还讨论了他们面临的挑战,并提供了对未来努力和方向的见解。
    Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对代谢行为的系统表征和理解是高效植物代谢工程和合成生物学的基础。基因组尺度的代谢网络(GSMN)是全面表征整体代谢谱不可或缺的工具。在这里,我们首先构建了烟草的GSMN,这是使用最广泛的工厂底盘之一,然后结合烟草GSMN和多组学分析,系统地阐明了离体培养对烟草代谢网络的影响。离体培养是一种广泛使用的植物栽培技术,不仅在基础研究领域,而且在有价值的园艺和药用植物的快速繁殖方面。然而,体外培养对植物整体代谢的系统性影响很容易被忽视,目前仍知之甚少。我们发现离体烟草生长较慢,与土壤种植的烟草相比,生物量较少,光合作用受到抑制。确定了体外和土壤种植的烟草植物之间代谢产物和代谢途径的许多变化,显着表明在体外条件下氨基酸含量显着增加。计算机研究表明,离体烟草下调光合作用和初级碳代谢,虽然显著上调GS/GOGAT周期,以及产生更多的能量和更少的NADH/NADPH来适应体外生长需求。总之,实验和计算机模拟分析的结合提供了前所未有的烟草代谢观点,对体外培养的影响有了宝贵的见解,能够更有效地利用体外技术进行植物繁殖和代谢工程。
    The systematical characterization and understanding of the metabolic behaviors are the basis of the efficient plant metabolic engineering and synthetic biology. Genome-scale metabolic networks (GSMNs) are indispensable tools for the comprehensive characterization of overall metabolic profile. Here we first constructed a GSMN of tobacco, which is one of the most widely used plant chassis, and then combined the tobacco GSMN and multiomics analysis to systematically elucidate the impact of in-vitro cultivation on the tobacco metabolic network. In-vitro cultivation is a widely used technique for plant cultivation, not only in the field of basic research but also for the rapid propagation of valuable horticultural and pharmaceutical plants. However, the systemic effects of in-vitro cultivation on overall plant metabolism could easily be overlooked and are still poorly understood. We found that in-vitro tobacco showed slower growth, less biomass and suppressed photosynthesis than soil-grown tobacco. Many changes of metabolites and metabolic pathways between in-vitro and soil-grown tobacco plants were identified, which notably revealed a significant increase of the amino acids content under in-vitro condition. The in silico investigation showed that in-vitro tobacco downregulated photosynthesis and primary carbon metabolism, while significantly upregulated the GS/GOGAT cycle, as well as producing more energy and less NADH/NADPH to acclimate in-vitro growth demands. Altogether, the combination of experimental and in silico analyses offers an unprecedented view of tobacco metabolism, with valuable insights into the impact of in-vitro cultivation, enabling more efficient utilization of in-vitro techniques for plant propagation and metabolic engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Toxoplasma gondii has long been considered a ubiquitous parasite possessing the capacity of infecting virtually all warm-blooded animals globally. Occasionally, this parasite can also infect cold-blooded animals such as fish if their body temperature reaches 37 °C. However, we are currently lacking an understanding of key details such as the minimum temperature required for T. gondii invasion and proliferation in these cold-blooded animals and their cells. Here, we performed in vitro T. gondii infection experiments with rat embryo fibroblasts (REF cells), grouper (Epinephelus coioides) splenocytes (GS cells) and zebra fish (Danio rerio) hepatocytes (ZFL cells), at 27 °C, 30 °C, 32 °C, 35 °C and 37 °C, respectively. We found that T. gondii tachyzoites could penetrate REF, GS nd ZFL cells at 27 °C but clear inhibition of multiplication was observed. Intriguingly, the intracellular tachyzoites retained the ability to infect mice after 12 days of incubation in GS cells cultured at 27 °C as demonstrated by bioassay. At 30 °C, 32 °C and 35 °C, we observed that the mammalian cells (REF cells) and fish cells (GS and ZFL cells) could support T. gondii invasion and replication, which showed a temperature-dependent relationship in infection and proliferation rates. Our data demonstrated that the minimum temperature for T. gondii invasion and replication was 27 °C and 30 °C respectively, which indicated that temperature should be a key factor for T. gondii invasion and proliferation in host cells. This suggests that temperature-dependent infection determines the differences in the capability of T. gondii to infect cold- and warm-blooded vertebrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comparative Study
    Dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) are types of human dental tissue‑derived mesenchymal stem cells (MSCs). These cells possess a capacity for self‑renewal, multilineage differentiation potential and immunomodulatory functions. Previous studies have reported that DPSCs and SHED may be beneficial in regenerative treatments and immunotherapy. The substantial expansion of cells in vitro is a prerequisite to obtaining adequate cell numbers required for cell‑based therapy. However, the regeneration and clinical potential of MSCs diminishes with long‑term cell culture amplification. To assess the alterations in SHED and DPSCs characteristics that underlie cellular senescence and result from extended in vitro amplification, the biological properties of SHED and DPSCs at passages 4 (P4) and 20 (P20) were compared. The cells underwent senescence following serial expansion to P20, as determined by altered cell morphology, decreased proliferation and migration capacity, attenuated differentiation potential, elevated senescence‑associated β‑galactosidase (SA‑β‑gal)‑positive rates and increased apoptosis. The phenotypic changes were also accompanied by a marked increase in the expression of p53, p21 and p16Ink4a. The present study also identified that senescent DPSCs exhibited an increased number of positive cells in SA‑β‑gal staining and demonstrated varying expressions of p53, p21 and p16Ink4a in comparison with SHED, indicating the involvement of diverse pathways in cellular senescence during long‑term sequential in vitro culture and passage. Furthermore, at early and late passages, SHED exhibited a higher proliferation rate and osteogenic differentiation capability when compared with DPSCs. In addition, both cell types maintained their characteristic immunophenotype during long‑term cultivation, while the expression levels of CD73 were higher in SHED at P20. The present study concluded that notable alterations were exhibited in SHED and DPSCs during the process of extensive expansion in vitro and the results may provide guidance for the selection of safe and effective expanded SHED and DPSCs for regenerative medicine and therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Angiostrongylus cantonensis (A. cantonensis), a parasitic nematode, is the important neurotropic pathogen which causes human angiostrongyliasis. It has a complex life-cycle and severe parasite-host interaction in contrast to free-living nematode. Establishment of a well-suited life-cycle and in vitro cultivation of A. cantonensis in the laboratory will be one of the key techniques to elucidate the mechanism of parasite-host interaction. However, the low survival and growth rate of worms is still to be the problem. We optimized the known life-cycle of A. cantonensis in the laboratory, showing that small in size, easy to breed, and high compatibility of Biomphalaria straminea precede the common snails as an intermediate host of A. cantonensis. Furthermore, the egg hatching rate in Ham\'s F-12 medium reached approximately 80% using the eggs of mature female adult worms. We also demonstrated that the survival of larvae could be sustained for more than 30 days by in vitro cultivation of L1 larvae in DMEM with mixed antibiotics (100 units/mL of penicillin G potassium, 50 μg/mL of streptomycin sulfate, and 0.5 μg/mL of amphotericin B) and L3, L4, and L5 larvae in Waymouth\'s medium with 20% fetal calf serum and mixed antibiotics. Infective L1 and L3 larvae kept high infective rate to the snail and rat after cultivation in these media, respectively. It will provide the basis for studying on genetic manipulations for functional genes, new drug screening, and the mechanism of parasite-host interaction of parasitic nematodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Mesenchymal stromal cells (MSCs) have recently been shown to play important roles in mammalian host defenses against intracellular pathogens, but the molecular mechanism still needs to be clarified. We confirmed that human MSCs (hMSCs) prestimulated with IFN-γ showed a significant and dose-dependent ability to inhibit the growth of two types of Toxoplasma gondii [type I RH strain with green fluorescent proteins (RH/GFP) or type II PLK strain with red fluorescent proteins (PLK/RED)]. However, in contrast to previous reports, the anti-T. gondii activity of hMSCs was not mediated by indoleamine 2,3-dioxygenase (IDO). Genome-wide RNA sequencing (RNA-seq) analysis revealed that IFN-γ increased the expression of the p65 family of human guanylate-binding proteins (hGBPs) in hMSCs, especially hGBP1. To analyze the functional role of hGBPs, stable knockdowns of hGBP1, -2, and -5 in hMSCs were established using a lentiviral transfection system. hGBP1 knockdown in hMSCs resulted in a significant loss of the anti-T. gondii host defense property, compared with hMSCs infected with nontargeted control sequences. hGBP2 and -5 knockdowns had no effect. Moreover, the hGBP1 accumulation on the parasitophorous vacuole (PV) membranes of IFN-γ-stimulated hMSCs might protect against T. gondii infection. Taken together, our results suggest that hGBP1 plays a pivotal role in anti-T. gondii protection of hMSCs and may shed new light on clarifying the mechanism of host defense properties of hMSCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Schistosomiasis is a serious parasitic zoonosis caused by blood-dwelling flukes of the genus Schistosoma. Understanding functions of genes and proteins of this parasite is important for uncovering this pathogen\'s complex biology, which will provide valuable information to design new strategies for schistosomiasis control. Effective applications of molecular tools reported to investigate schistosome gene function, such as inhibitor studies and transgenesis, rely on the developments of in vitro cultivation system of this parasite and cells. Besides the in vitro culture studies dealing with Schistosoma mansoni, there are also numerous excellent studies about the in vitro cultivation of Schistosoma japonicum, which were performed by Chinese researchers and published in Chinese journals. Nearly every stage of the life-cycle of S. japonicum, including miracidia, mother sporocysts, cercariae, schistosomula, and egg-laying adult worms, was employed for developing in vitro cultivation methods, being accompanied by the introduction of several media and supplements that helped to improve culture conditions. It was not only possible to generate mother sporocysts from miracidia in vitro, but also to obtain adult worms from cercariae through in vitro cultivation. The main obstacles to complete the life cycle of S. japonicum in the lab are the transition from mother sporocysts to cercariae, and the production of fertilized and completely developed eggs by adult worms generated in vitro. With regard to cells from S. japonicum, besides established isolation protocols and morphological observations, media optimizations were conducted by using different chemical reagents, biological supplements and physical treatment. Among these, mutagens like N-methyl-N-nitro-N-nitrosoguanidine and the addition of extracellular matrix were found to be able to induce mitogenic activities. Although enzyme activities or the level of silver-stained nucleolar region associated protein in cultured cells indicated still suboptimal conditions, the achievements made point to the possibility of reaching the aim of establishing cell lines for S. japonicum. Both the improvements of the in vitro culture of larval and adult worms of S. japonicum as well as the access of cells of this parasite provide excellent advances for research on this important parasite in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号