graphdiyne

石墨烯
  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    有效利用人工光合作用的发展的主要障碍是缺乏在室温和环境压力下通过太阳光能量转化CO2的高度选择性和有效的光催化剂。经过多年的努力,我们最终完成了石墨炔基钯量子点催化剂的合成,该催化剂含有高密度金属原子的选择性人工光合作用步骤。设计良好的催化剂界面结构由电子给体和受体基团组成,导致石墨炔与界面上的等离子体金属纳米结构之间存在明显的不完全电荷转移现象。这些内在特征是催化剂高机能的起源。对其机理的研究表明,来自局部表面等离子体共振的热电子与欧姆接触界面处的快速光生载流子分离之间的协同作用加速了多电子反应动力学。该催化剂可以在室温和压力下由CO2和H2O直接选择性合成CH4,选择性接近100%,并表现出变革性的表现,平均CH4产率为26.2μmolg-1h-1,具有显着的长期稳定性。
    A major impediment to the development of the efficient use of artificial photosynthesis is the lack of highly selective and efficient photocatalysts toward the conversion of CO2 by sunlight energy at room temperature and ambient pressure. After many years of hard work, we finally completed the synthesis of graphdiyne-based palladium quantum dot catalysts containing high-density metal atom steps for selective artificial photosynthesis. The well-designed interface structure of the catalyst is composed of electron-donor and acceptor groups, resulting in the obvious incomplete charge-transfer phenomenon between graphdiyne and plasmonic metal nanostructures on the interface. These intrinsic characteristics are the origin of the high performance of the catalyst. Studies on its mechanism reveal that the synergism between \'hot electron\' from local surface plasmon resonance and rapid photogenerated carrier separation at the ohmic contact interface accelerates the multi-electron reaction kinetics. The catalyst can selectively synthesize CH4 directly from CO2 and H2O with selectivity of near 100% at room temperature and pressure, and exhibits transformative performance, with an average CH4 yield of 26.2 μmol g-1 h-1 and remarkable long-term stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    铂对CO氧化的催化活性取决于铂中心的电子捐赠和回赠的相互作用。在这里,我们证明了在石墨炔(PtBrNP/Br-GDY)中与sp-C键合的溴上具有富电子性质的铂溴纳米颗粒,它由溴配体形成,并构成对甲醇氧化反应(MOR)具有高耐CO性的电催化剂。催化剂对MOR的峰质量活性高达10.4AmgPt-1,比20%Pt/C高20.8倍。催化剂还显示出稳健的长期稳定性,在35mAcm-2下100小时后具有轻微的电流密度衰减。结构表征,实验性的,理论研究表明,溴的电子提供使铂催化剂表面高度富电子,并可以增强CO的吸附,增强Pt的π回赠,削弱C-O键,促进CO电氧化,提高MOR过程中的催化性能。结果突出了Pt-卤素催化剂中活性位点中富电子结构的重要性,并为CO电氧化的新机制提供了详细的见解,以克服轨道水平上Pt中心的CO中毒。
    The catalytic activity of platinum for CO oxidation depends on the interaction of electron donation and back-donation at the platinum center. Here we demonstrate that the platinum bromine nanoparticles with electron-rich properties on bromine bonded with sp-C in graphdiyne (PtBr NPs/Br-GDY), which is formed by bromine ligand and constitutes an electrocatalyst with a high CO-resistant for methanol oxidation reaction (MOR). The catalyst showed peak mass activity for MOR as high as 10.4 A mgPt -1, which is 20.8 times higher than the 20 % Pt/C. The catalyst also showed robust long-term stability with slight current density decay after 100 hours at 35 mA cm-2. Structural characterization, experimental, and theoretical studies show that the electron donation from bromine makes the surface of platinum catalysts highly electron-rich, and can strengthen the adsorption of CO as well as enhance π back-donation of Pt to weaken the C-O bond to facilitate CO electrooxidation and enhance catalytic performance during MOR. The results highlight the importance of electron-rich structure among active sites in Pt-halogen catalysts and provide detailed insights into the new mechanism of CO electrooxidation to overcome CO poisoning at the Pt center on an orbital level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    硝酸盐(NO3-)到氨(NH3)的电催化还原反应是实现人工氮气循环的可行途径。然而,低收率和对NH3产物的差的选择性是技术挑战。在这里,我们提出了一种基于石墨炔(GDY)的串联催化剂,其特征是Cu/CuxO纳米颗粒锚定在GDY载体上(称为Cu/CuxO/GDY),用于有效的电催化NO3还原。我们实现了25.4mgh-1mgcat的高NH3产率。-1(25.4mgh-1cm-2),在使用设计的催化剂相对于RHE的-0.8V的施加电位下,法拉第效率为99.8%。这些性能指标优于碱性介质中大多数报道的NO3-至NH3催化剂。电化学测量和密度泛函理论表明,NO3-优先攻击Cu/CuxO,GDY能有效催化NO2-还原为NH3。这项工作突出了GDY作为人工氮循环的新型串联催化剂的功效,并为串联电催化剂的设计提供了有力的指导。本文受版权保护。保留所有权利。
    The electrocatalytic reduction reaction of nitrate (NO3 -) to ammonia (NH3) is a feasible way to achieve artificial nitrogen cycle. However, the low yield rate and poor selectivity toward NH3 product is a technical challenge. Here a graphdiyne (GDY)-based tandem catalyst featuring Cu/CuxO nanoparticles anchored to GDY support (termed Cu/CuxO/GDY) for efficient electrocatalytic NO3 - reduction is presented. A high NH3 yield rate of 25.4 mg h-1 mgcat. -1 (25.4 mg h-1 cm-2) with a Faradaic efficiency of 99.8% at an applied potential of -0.8 V versus RHE using the designed catalyst is achieved. These performance metrics outperform most reported NO3 - to NH3 catalysts in the alkaline media. Electrochemical measurements and density functional theory reveal that the NO3 - preferentially attacks Cu/CuxO, and the GDY can effectively catalyze the reduction of NO2 - to NH3. This work highlights the efficacy of GDY as a new class of tandem catalysts for the artificial nitrogen cycle and provides powerful guidelines for the design of tandem electrocatalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    精确制作异质结以实现有效的电荷分离是光催化析氢领域的主要障碍。通过使用简单的物理混合技术将Ag2S量子点(Ag2SQD)锚定到石墨炔(GDY)纳米片(Ag2SQD/GDY)上,成功地制造了0D/2D异质结。这种独特的结构允许GDY和Ag2SQD之间的良好接触,从而提高电荷转移的速率。Ag2SQDs/GDY的光吸收能力高达1200nm,能够强烈吸收光,包括红外线。通过DFT计算和原位XPS分析,证明了将Ag2S量子点结合到GDY上可以有效地调节电子结构,促进内部电场,并促进定向电子转移。这种定向电子转移增强了GDY和Ag2SQD对电子的利用,与Ag2S量子点作为电子储库的有效光催化析氢的额外好处。7%的Ag2SQDs/GDY复合材料在光催化析氢(2418μmolg-1h-1)中表现出令人印象深刻的效率和稳定性能,远高于GDY和Ag2SQD。这项研究最终证明了GDY和Ag2S量子点形成的0D/2D异质结可以建立高质量的接触和高效的电荷转移,最终提高光催化性能。
    Precisely crafting heterojunctions for efficient charge separation is a major obstacle in the realm of photocatalytic hydrogen evolution. A 0D/2D heterojunction was successfully fabricated by anchoring Ag2S quantum dots (Ag2S QDs) onto graphdiyne (GDY) nanosheets (Ag2S QDs/GDY) using a straightforward physical mixing technique. This unique structure allows for excellent contact between GDY and Ag2S QDs, thereby enhancing the rate of charge transfer. The light absorption capabilities of Ag2S QDs/GDY extend up to 1200 nm, enabling strong absorption of light, including infrared. Through DFT calculations and in-situ XPS analysis, it was demonstrated that incorporating Ag2S QDs onto GDY effectively modulates the electronic structure, promotes an internal electric field, and facilitates directional electron transfer. This directed electron transfer enhances the utilization of electrons by GDY and Ag2S QDs, with the added benefit of Ag2S QDs serving as electron reservoirs for efficient photocatalytic hydrogen evolution. A 7 %Ag2S QDs/GDY composite exhibited impressive efficiency and stable performance in photocatalytic hydrogen evolution (2418 μmol g-1 h-1), which is much higher than that of GDY and Ag2S QDs. This study conclusively demonstrates that the 0D/2D heterojunction formed by GDY and Ag2S QDs can establish high-quality contact and efficient charge transfer, ultimately enhancing photocatalytic performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属原子催化剂由于其特殊的物理和化学性质而成为最重要的研究对象之一。然而,精确控制金属原子的锚定仍然是一个挑战。钴和铱原子阵列根据其固有的化学性质和相互作用在石墨炔(GDY)三角形腔中形成顺序有序的稳定阵列。这种方法的成功归功于GDY的多功能集成,实现从一个原子到几个原子和各种原子密度的选择性生长。双金属原子阵列显示出因乙炔键的还原性而产生的几个优点,空间限制效应,GDY和金属原子之间的不完全电荷转移,和sp-C杂交的三键骨架。这种精心设计的系统表现出前所未有的析氧反应(OER)性能,质量活度为2.6Amgcat。-1在300mV的低过电位下,比最先进的IrO2催化剂高216.6倍,和长期稳定。
    Metal atom catalysts have been among the most important research objects due to their specific physical and chemical properties. However, precise control of the anchoring of metal atoms is still challenging to achieve. Cobalt and iridium atomic arrays formed sequentially ordered stable arrays in graphdiyne (GDY) triangular cavities depending on their intrinsic chemical properties and interactions. The success of this method was attributed to multifunctional integration of GDY, enabling selective growth from one to several atoms and various atomic densities. The bimetallic atom arrays show several advantages resulting from reducibility of acetylene bonds, space limiting effect, incomplete charge transfer between GDY and metal atoms, and sp-C hybridized triple bond skeleton. This well-designed system exhibits unprecedented oxygen evolution reaction (OER) performance with a mass activity of 2.6 A mgcat. -1 at a low overpotential of 300 mV, which is 216.6 times higher than the state-of-the-art IrO2 catalyst, and long-term stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锌空气电池的性能受到氧电极反应速率缓慢的制约,特别是在氧还原反应(ORR)的动力学过程显著减速的高电流放电条件下。为了应对这一挑战,我们提出了一种新颖的相变策略,该策略有助于创建杂原子掺杂的异质界面(CoN/CoS2)。精心设计的CoN/CoS2/NC电催化剂在10mAcm-2时显示出0.87V的ORR半波电位和320mV的OER超电位。实验和计算分析证实,CoN/CoS2异质结构优化了局部电荷分布,加速电子转移,并调整活性位点以增强催化作用。值得注意的是,这种异质结通过在恶劣的碱性条件下抵抗腐蚀和降解来提高稳定性,因此,在定制的液体锌空气电池中表现出卓越的性能和寿命。这项研究为电催化应用中设计有效的异质界面提供了有价值的实践和理论基础。
    The performance of zinc-air battery is constrained by the sluggish rate of oxygen electrode reaction, particularly under high current discharge conditions where the kinetic process of the oxygen reduction reaction (ORR) decelerates significantly. To address this challenge, we present a novel phase transition strategy that facilitates the creation of a heteroatom-doped heterointerface (CoN/CoS2). The meticulously engineered CoN/CoS2/NC electrocatalyst displays a superior ORR half-wave potential of 0.87 V and an OER overpotential of 320 mV at 10 mA cm-2. Experimental and computational analysis confirm that the CoN/CoS2 heterostructure optimizes local charge distribution, accelerates electron transfer, and tunes active sites for enhanced catalysis. Notably, this heterojunction improves stability by resisting corrosion and degradation under harsh alkaline conditions, thus demonstrating superior performance and longevity in a custom-made liquid zinc-air battery. This research provides valuable practical and theoretical foundations for designing efficient heterointerfaces in electrocatalysis applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经活动的光热调制为了解大脑回路和开发神经系统疾病的疗法提供了一种有前途的方法。然而,现有光热纳米材料的低神经元选择性和低效率的光热转换显著限制了其神经调节的潜力。这里,我们报告说,石墨烯(GDY)可以发展成为一种有效的神经元靶向光热换能器,用于通过合理的表面功能化在体内调节神经元活动。我们通过非共价疏水相互作用用聚乙二醇(PEG)官能化GDY,然后通过抗体偶联特异性靶向神经细胞表面的温敏瞬时受体电位阳离子通道亚家族V成员1(TRPV1)。纳米换能器不仅在近红外区域表现出高的光热转换效率,而且还表现出很大的TRPV1靶向能力。这使得TRPV1能够光热激活,导致细胞中的神经递质释放和活小鼠中的神经放电的调节。凭借其精密度和选择性,基于GDY的换能器为了解脑功能和开发神经退行性疾病的治疗策略提供了创新途径.
    Photothermal modulation of neural activity offers a promising approach for understanding brain circuits and developing therapies for neurological disorders. However, the low neuron selectivity and inefficient light-to-heat conversion of existing photothermal nanomaterials significantly limit their potential for neuromodulation. Here, we report that graphdiyne (GDY) can be developed into an efficient neuron-targeted photothermal transducer for in vivo modulation of neuronal activity through rational surface functionalization. We functionalize GDY with polyethylene glycol (PEG) through noncovalent hydrophobic interactions, followed by antibody conjugation to specifically target the temperature-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1) on the surface of neural cells. The nanotransducer not only exhibits high photothermal conversion efficiency in the near-infrared region but also shows great TRPV1-targeting capability. This enables photothermal activation of TRPV1, leading to neurotransmitter release in cells and modulation of neural firing in living mice. With its precision and selectivity, the GDY-based transducer provides an innovative avenue for understanding brain function and developing therapeutic strategies for neurodegenerative diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    含石墨烯(GDY)和其他金属材料的复合材料体系的精确构建促进了创新结构的形成和在能源领域的实际应用,催化作用,光电子学,和生物医学。为了满足实际要求,在宽范围内精确形成多尺度界面,从单原子到纳米结构,在结构设计和性能优化中起着重要作用。结构之间的内在相关性,合成过程,特征属性,并对器件性能进行了系统的研究。本文概述了有关GDY上多尺度金属界面受控形成的最新研究成果。界面调节的综合策略,以及结构和性能之间的相关性,被呈现。此外,还提供了设计和合成负载到GDY基物质上的功能金属基材料的创新研究思路,展示了GDY基材料的应用潜力。
    The accurate construction of composite material systems containing graphdiyne (GDY) and other metallic materials has promoted the formation of innovative structures and practical applications in the fields of energy, catalysis, optoelectronics, and biomedicine. To fulfill the practical requirements, the precise formation of multiscale interfaces over a wide range, from single atoms to nanostructures, plays an important role in the optimization of the structural design and properties. The intrinsic correlations between the structure, synthesis process, characteristic properties, and device performance are systematically investigated. This review outlines the current research achievements regarding the controlled formation of multiscale metallic interfaces on GDY. Synthetic strategies for interface regulation, as well as the correlation between the structure and performance, are presented. Furthermore, innovative research ideas for the design and synthesis of functional metal-based materials loaded onto GDY-based substances are also provided, demonstrating the promising application potential of GDY-based materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Cu2+加速α-突触核蛋白原纤维的病毒样繁殖,并在帕金森病(PD)的发病机制中起关键作用。因此,Cu2+的准确检测对PD等神经系统疾病的诊断至关重要。Cu2+检测过程受到具有相似电化学性质的物质的阻碍。在这项研究中,石墨烯(GDY),一种新型的碳同素异形体,具有很强的电子供给能力,利用其对Cu2的出色吸附能力,用于Cu2的高选择性检测。密度泛函理论(DFT)计算表明Cu原子吸附在GDY的空腔中,Cu和C原子之间的吸收能高于石墨烯(GR),说明GDY的空穴有利于Cu原子的吸附和电化学传感。基于GDY的电化学传感器可以有效避免氨基酸的干扰,金属离子和神经递质,具有9.77μA·μM-1·cm-2的高灵敏度,最小可检测浓度为200nM。在以α-突触核蛋白为诊断标准的PD发病机制和治疗过程中,检测L-DOPA和GSH处理前后细胞中Cu2+的浓度,发现Cu2+作为PD的生物标志物具有很高的潜力。本研究不仅利用GDY和Cu2+的良好吸附来提高离子检测的特异性,而且为更深入地理解Cu2+在神经生物学和神经系统疾病中的作用提供线索。
    Cu2+ accelerates the viral-like propagation of α-synuclein fibrils and plays a key role in the pathogenesis of Parkinson\'s disease (PD). Therefore, the accurate detection of Cu2+ is essential for the diagnosis of PD and other neurological diseases. The Cu2+ detection process is impeded by substances that have similar electrochemical properties. In this study, graphdiyne (GDY), a new kind of carbon allotrope with strong electron-donating ability, was utilized for the highly selective detection of Cu2+ by taking advantage of its outstanding adsorption capacity for Cu2+. Density functional theory (DFT) calculations show that Cu atoms are adsorbed in the cavity of GDY, and the absorption energy between Cu and C atoms is higher than that of graphene (GR), indicating that the cavity of GDY is favorable for the adsorption of Cu atoms and electrochemical sensing. The GDY-based electrochemical sensor can effectively avoid the interference of amino acids, metal ions and neurotransmitters and has a high sensitivity of 9.77 μA·μM-1·cm-2, with a minimum detectable concentration of 200 nM. During the investigating pathogenesis and therapeutic process of PD with α-synuclein as the diagnostic standard, the concentration of Cu2+ in cells before and after L-DOPA and GSH treatments were examined, and it was found that Cu2+ exhibits high potential as a biomarker for PD. This study not only harnesses the favorable adsorption of the GDY and Cu2+ to improve the specificity of ion detection but also provide clues for deeper understanding of the role of Cu2+ in neurobiology and neurological diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号