关键词: CO2 conversion controllable growth graphdiyne heterocatalysis single-crystalline

来  源:   DOI:10.1093/nsr/nwae189   PDF(Pubmed)

Abstract:
A major impediment to the development of the efficient use of artificial photosynthesis is the lack of highly selective and efficient photocatalysts toward the conversion of CO2 by sunlight energy at room temperature and ambient pressure. After many years of hard work, we finally completed the synthesis of graphdiyne-based palladium quantum dot catalysts containing high-density metal atom steps for selective artificial photosynthesis. The well-designed interface structure of the catalyst is composed of electron-donor and acceptor groups, resulting in the obvious incomplete charge-transfer phenomenon between graphdiyne and plasmonic metal nanostructures on the interface. These intrinsic characteristics are the origin of the high performance of the catalyst. Studies on its mechanism reveal that the synergism between \'hot electron\' from local surface plasmon resonance and rapid photogenerated carrier separation at the ohmic contact interface accelerates the multi-electron reaction kinetics. The catalyst can selectively synthesize CH4 directly from CO2 and H2O with selectivity of near 100% at room temperature and pressure, and exhibits transformative performance, with an average CH4 yield of 26.2 μmol g-1 h-1 and remarkable long-term stability.
摘要:
有效利用人工光合作用的发展的主要障碍是缺乏在室温和环境压力下通过太阳光能量转化CO2的高度选择性和有效的光催化剂。经过多年的努力,我们最终完成了石墨炔基钯量子点催化剂的合成,该催化剂含有高密度金属原子的选择性人工光合作用步骤。设计良好的催化剂界面结构由电子给体和受体基团组成,导致石墨炔与界面上的等离子体金属纳米结构之间存在明显的不完全电荷转移现象。这些内在特征是催化剂高机能的起源。对其机理的研究表明,来自局部表面等离子体共振的热电子与欧姆接触界面处的快速光生载流子分离之间的协同作用加速了多电子反应动力学。该催化剂可以在室温和压力下由CO2和H2O直接选择性合成CH4,选择性接近100%,并表现出变革性的表现,平均CH4产率为26.2μmolg-1h-1,具有显着的长期稳定性。
公众号