Selenious Acid

硒酸
  • 文章类型: Journal Article
    硒(Se)是生物体必需的微量营养素,对植物的生理活性和基因表达有显著影响,从而影响生长发育。人类和动物从植物中获取硒。番茄(SolanumlycopersicumL.)是世界范围内重要的蔬菜作物。提高硒营养水平不仅有利于生长,番茄植物的发育和抗逆性也有助于改善人类健康。然而,硒介导的番茄植物生长的分子基础尚未完全阐明。在这项研究中,使用生理和转录组学分析,研究了低剂量亚硒酸盐[Se(Ⅳ)]对番茄幼苗生长的影响。Se(IV)提高了光合效率,增加了可溶性糖的积累,干物质和有机物,从而促进番茄植株生长。转录组分析显示Se(IV)重编程的初级和次级代谢途径,从而调节植物生长。Se(IV)也增加了生长素的浓度,叶中的茉莉酸和水杨酸以及根中细胞分裂素的浓度,从而改变植物激素信号通路,影响植物生长和番茄植株的抗逆性。此外,外源Se(IV)改变类黄酮生物合成相关基因的表达,从而调节番茄植物的生长和发育。一起来看,这些发现为低剂量Se(IV)对番茄生长的调节机制提供了重要见解,并有助于硒积累番茄品种的选育。
    Selenium (Se) is an essential micronutrient in organisms that has a significant impact on physiological activity and gene expression in plants, thereby affecting growth and development. Humans and animals acquire Se from plants. Tomato (Solanum lycopersicum L.) is an important vegetable crop worldwide. Improving the Se nutrient level not only is beneficial for growth, development and stress resistance in tomato plants but also contributes to improving human health. However, the molecular basis of Se-mediated tomato plant growth has not been fully elucidated. In this study, using physiological and transcriptomic analyses, we investigated the effects of a low dosage of selenite [Se(Ⅳ)] on tomato seedling growth. Se(IV) enhanced the photosynthetic efficiency and increased the accumulation of soluble sugars, dry matter and organic matter, thereby promoting tomato plant growth. Transcriptome analysis revealed that Se(IV) reprogrammed primary and secondary metabolic pathways, thus modulating plant growth. Se(IV) also increased the concentrations of auxin, jasmonic acid and salicylic acid in leaves and the concentration of cytokinin in roots, thus altering phytohormone signaling pathways and affecting plant growth and stress resistance in tomato plants. Furthermore, exogenous Se(IV) alters the expression of genes involved in flavonoid biosynthesis, thereby modulating plant growth and development in tomato plants. Taken together, these findings provide important insights into the regulatory mechanisms of low-dose Se(IV) on tomato growth and contribute to the breeding of Se-accumulating tomato cultivars.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:一些研究表明,亚硒酸盐[Se(Ⅳ)]诱导的细胞形态改变可能归因于其对细胞分裂的抑制作用。然而,与细胞分裂相关的基因是否与Se(Ⅳ)代谢有关尚不清楚。
    结果:采用框内缺失策略对水痘HX2中的ftsK基因进行了突变。ftsK突变强烈降低了对亚硒酸盐[Se(Ⅳ)]的耐受性和对R.aquatilisHX2中红色元素硒[Se(0)]的产生,这种作用不能仅归因于对细胞生长的抑制。删除ftsK基因还导致在指数期和稳定期期间水草芽孢杆菌HX2的细菌生长显着降低。ftsK的缺失抑制了细胞分裂,导致细长丝状细胞的发育。此外,FtsK功能的丧失显著影响了7个与细胞分裂和Se(Ⅳ)代谢相关的基因表达至少2倍,硒(Ⅳ)处理下的实时定量PCR(RT-qPCR)揭示。
    结论:这些发现表明,FtsK与Se(Ⅳ)耐受性和Se(0)生成有关,并且是协调水曲柳HX2中细菌生长和细胞形态的关键因素。
    OBJECTIVE: Some studies have indicated that the alterations in cellular morphology induced by selenite [Se(Ⅳ)] may be attributed to its inhibitory effects on cell division. However, whether the genes associated with cell division are implicated in Se(Ⅳ) metabolism remains unclear.
    RESULTS: The ftsK gene in Rahnella aquatilis HX2 was mutated with an in-frame deletion strategy. The ftsK mutation strongly reduced the tolerance to selenite [Se(Ⅳ)] and the production of red elemental selenium [Se(0)] in R. aquatilis HX2, and this effect could not be attributed solely to the inhibition of cell growth. Deleting the ftsK gene also resulted in a significant decrease in bacterial growth of R. aquatilis HX2 during both exponential and stationary phases. The deletion of ftsK inhibited cell division, resulting in the development of elongated filamentous cells. Furthermore, the loss-of-function of FtsK significantly impacted the expression of seven genes linked to cell division and Se(Ⅳ) metabolism by at least 2-fold, as unveiled by real-time quantitative PCR (RT-qPCR) under Se(Ⅳ) treatment.
    CONCLUSIONS: These findings suggest that FtsK is associated with Se(Ⅳ) tolerance and Se(0) generation and is a key player in coordinating bacterial growth and cell morphology in R. aquatilis HX2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    红曲霉是功能性发酵真菌,具有补充硒(Se)的潜力。本研究调查了硒生物强化对生长的影响,形态学,以及红曲霉M7的生物合成。结果表明,红曲米(RYR)中橙色和红色红曲色素(MPs)的产量显着提高了38.52%和36.57%,分别,在20μg/mL的亚硒酸盐压力下。同时,citrinin(CIT)的生产,一种霉菌毒素,从244.47μg/g降至175.01μg/g。转录组分析显示,参与MPs生物合成的12个基因显著上调,特别是Mpige,MpigF,还有MpigN,以及与CIT生物合成相关的四个基因(mrr3,mrr4,mrr7和mrr8)的下调。此外,三个编码半胱氨酸合酶cysK的基因(Log2FC=1.6),蛋氨酸合成酶metH(Log2FC=2.2),在硒化合物代谢中,甲硫氨酰-tRNA合成酶metG(Log2FC=1.8)显着上调。这些发现为丝状真菌中硒的生物转化和代谢提供了见解。
    Monascus species are functional fermentation fungi with great potential for selenium (Se) supplementation. This study investigated the effects of Se bio-fortification on the growth, morphology, and biosynthesis of Monascus ruber M7. The results demonstrated a significant increase in the yield of orange and red Monascus pigments (MPs) in red yeast rice (RYR) by 38.52% and 36.57%, respectively, under 20 μg/mL of selenite pressure. Meanwhile, the production of citrinin (CIT), a mycotoxin, decreased from 244.47 μg/g to 175.01 μg/g. Transcriptome analysis revealed significant upregulation of twelve genes involved in MPs biosynthesis, specifically MpigE, MpigF, and MpigN, and downregulation of four genes (mrr3, mrr4, mrr7, and mrr8) associated with CIT biosynthesis. Additionally, three genes encoding cysteine synthase cysK (Log2FC = 1.6), methionine synthase metH (Log2FC = 2.2), and methionyl-tRNA synthetase metG (Log2FC = 1.8) in selenocompound metabolism showed significantly upregulated. These findings provide insights into Se biotransformation and metabolism in filamentous fungi.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    亚硒酸盐微生物还原成元素硒纳米颗粒(SeNP)被认为是亚硒酸盐对许多细菌的有效解毒过程。在这项研究中,变液杆菌。ES129和海洋芽孢杆菌。选择具有高亚硒酸盐还原效率或耐受性的ES111用于系统和比较研究其在亚硒酸盐去除和有价值的SeNPs回收中的性能。亚硒酸盐还原的动力学监测表明,在ES129的浓度为4.24mM和ES111的浓度为4.88mM时,亚硒酸盐向SNP的转化效率最高。超显微分析表明,ES111和ES129产生的SeNPs已在细胞质中形成,随后通过细胞裂解过程释放到细胞外空间。此外,转录组分析表明,参与杆菌锂醇生物合成的基因的表达,硒化合物代谢和脯氨酸代谢在亚硒酸盐还原过程中显著上调,这表明亚硒酸盐向Se0的转化可能涉及多种途径。此外,与核苷酸切除修复和抗氧化相关酶相关的基因的上调可能增强细菌对亚硒酸盐的耐受性。一般来说,探索高耐亚硒酸盐细菌的亚硒酸盐还原和耐受机制,对于有效利用微生物进行环境修复具有重要意义。
    The microbial reduction of selenite to elemental selenium nanoparticles (SeNPs) is thought to be an effective detoxification process of selenite for many bacteria. In this study, Metasolibacillus sp. ES129 and Oceanobacillus sp. ES111 with high selenite reduction efficiency or tolerance were selected for systematic and comparative studies on their performance in selenite removal and valuable SeNPs recovery. The kinetic monitoring of selenite reduction showed that the highest transformation efficiency of selenite to SeNPs was achieved at a concentration of 4.24 mM for ES129 and 4.88 mM for ES111. Ultramicroscopic analysis suggested that the SeNPs produced by ES111 and ES129 had been formed in cytoplasm and subsequently released to extracellular space through cell lysis process. Furthermore, the transcriptome analysis indicated that the expression of genes involved in bacillithiol biosynthesis, selenocompound metabolism and proline metabolism were significantly up-regulated during selenite reduction, suggesting that the transformation of selenite to Se0 may involve multiple pathways. Besides, the up-regulation of genes associated with nucleotide excision repair and antioxidation-related enzymes may enhance the tolerance of bacteria to selenite. Generally, the exploration of selenite reduction and tolerance mechanisms of the highly selenite-tolerant bacteria is of great significance for the effective utilization of microorganisms for environmental remediation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项研究中,研究了三角Phaeodactylum对不同浓度的无机硒(Se)的生化响应。据观察,当与富里酸结合时,tricornutum表现出增强的无机硒的吸收和生物转化,以及增加微藻脂质的生物合成。值得注意的是,当在富里酸处理下经受中等(5和10mg/L)和高(20和40mg/L)浓度的亚硒酸盐时,碳通量向碳水化合物的脂肪生成和蛋白质生物合成有明显的重定向。此外,基于微藻的生物燃料的关键参数与生物燃料法规中概述的必要标准一致。此外,Tricornutum的硒去除能力,在富里酸的辅助下,再加上大量有机硒的积累,特别是SeCys.这些发现为建立基于微藻的Se吸收和生物转化系统提供了可行且成功的方法。
    In this study, the biochemical response of Phaeodactylum tricornutum to varying concentrations of inorganic selenium (Se) was investigated. It was observed that, when combined with fulvic acid, P. tricornutum exhibited enhanced uptake and biotransformation of inorganic Se, as well as increased microalgal lipid biosynthesis. Notably, when subjected to moderate (5 and 10 mg/L) and high (20 and 40 mg/L) concentrations of selenite under fulvic acid treatment, there was a discernible redirection of carbon flux towards lipogenesis and protein biosynthesis from carbohydrates. In addition, the key parameters of microalgae-based biofuels aligned with the necessary criteria outlined in biofuel regulations. Furthermore, the Se removal capabilities of P. tricornutum, assisted by fulvic acid, were coupled with the accumulation of substantial amounts of organic Se, specifically SeCys. These findings present a viable and successful approach to establish a microalgae-based system for Se uptake and biotransformation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    两种革兰氏染色阴性细菌菌株,R39T和R73T,从中国硒高积累的卡米米·胡平山西的根际土壤中分离出来。菌株R39T将亚硒酸盐转化为元素和挥发性硒,而菌株R73T将硒酸盐和亚硒酸盐转化为元素硒。系统发育和系统基因组分析表明,菌株R39T属于无色杆菌属,而菌株R73T属于Buttiauxella属。菌株R39T(基因组大小,6.68Mb;G+C含量,61.6mol%)显示出最接近的关系,与加拿大白斑无色杆菌LMG26219T和德国白斑无色杆菌LMG3441T,平均核苷酸同一性(ANI)值为83.6%和83.4%,分别。菌株R73T(基因组大小,5.22Mb;G+C含量,50.3mol%)与产铁牛乳ATCC51602T最密切相关,ANI值为86.4%。此外,通过系统基因组分析,发现GenBank数据库中的A111菌株与Buttiauxella属内的R73T菌株聚类。菌株R73T和A111之间的ANI和数字DNA-DNA杂交值分别为97.5和80.0%,表明它们属于同一物种。表型特征也将菌株R39T和菌株R73T从它们密切相关的物种中区分出来。根据多相分析,菌株R39T和菌株R73T代表无色杆菌属和Buttiauxella属的新物种,分别,其名称为Seleniivolotlans无色杆菌sp。11月。(类型菌株R39T=GDMCC1.3843T=JCM36009T)和硒化布托氏菌。11月。(型应变R73T=GDMCC1.3636T=JCM35850T)提出。
    Two Gram-stain-negative bacterial strains, R39T and R73T, were isolated from the rhizosphere soil of the selenium hyperaccumulator Cardamine hupingshanesis in China. Strain R39T transformed selenite into elemental and volatile selenium, whereas strain R73T transformed both selenate and selenite into elemental selenium. Phylogenetic and phylogenomic analyses indicated that strain R39T belonged to the genus Achromobacter, while strain R73T belonged to the genus Buttiauxella. Strain R39T (genome size, 6.68 Mb; G+C content, 61.6 mol%) showed the closest relationship to Achromobacter marplatensis LMG 26219T and Achromobacter kerstersii LMG 3441T, with average nucleotide identity (ANI) values of 83.6 and 83.4 %, respectively. Strain R73T (genome size, 5.22 Mb; G+C content, 50.3 mol%) was most closely related to Buttiauxella ferragutiae ATCC 51602T with an ANI value of 86.4 %. Furthermore, strain A111 from the GenBank database was found to cluster with strain R73T within the genus Buttiauxella through phylogenomic analyses. The ANI and digital DNA-DNA hybridization values between strains R73T and A111 were 97.5 and 80.0% respectively, indicating that they belong to the same species. Phenotypic characteristics also differentiated strain R39T and strain R73T from their closely related species. Based on the polyphasic analyses, strain R39T and strain R73T represent novel species of the genera Achromobacter and Buttiauxella, respectively, for which the names Achromobacter seleniivolatilans sp. nov. (type strain R39T=GDMCC 1.3843T=JCM 36009T) and Buttiauxella selenatireducens sp. nov. (type strain R73T=GDMCC 1.3636T=JCM 35850T) are proposed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:间质性肺病(ILD)治疗是一个关键的未满足的需求。硒是人类生命必需的微量元素,也是激活谷胱甘肽的抗氧化剂,但是它的必要性和毒性之间的差距很小,需要特别注意。硒是否可用于ILD的治疗尚不清楚。
    方法:我们研究了亚硒酸盐的预防和治疗效果,硒衍生物,使用博来霉素诱导的特发性肺纤维化(IPF)的小鼠模型在ILD中。我们使用体外细胞模型进一步阐明了潜在的机制,并检查了它们在人体组织标本中的相关性。通过呼吸功能和组织化学变化评估亚硒酸盐在博来霉素给药小鼠中的治疗效果。测量了亚硒酸盐诱导的鼠肺成纤维细胞中的细胞凋亡和活性氧(ROS)的产生。
    结果:亚硒酸盐,博来霉素后1天(炎症期)或8天(纤维化期),预防和治疗小鼠肺功能恶化和肺纤维化。机械上,亚硒酸盐在体外和体内均抑制博莱霉素处理后小鼠肺成纤维细胞的增殖并诱导其凋亡。此外,亚硒酸盐上调小鼠肺成纤维细胞中的谷胱甘肽还原酶(GR)和硫氧还蛋白还原酶(TrxR),但不是在肺上皮细胞中,博来霉素治疗。GR和TrxR抑制消除了亚硒酸盐的治疗效果。此外,我们发现GR和TrxR在IPF患者的人肺成纤维细胞中上调。
    结论:亚硒酸盐通过GR和TrxR上调诱导小鼠肺成纤维细胞产生ROS和凋亡,从而在博来霉素诱导的IPF中提供治疗效果。
    BACKGROUND: Interstitial lung disease (ILD) treatment is a critical unmet need. Selenium is an essential trace element for human life and an antioxidant that activates glutathione, but the gap between its necessity and its toxicity is small and requires special attention. Whether selenium can be used in the treatment of ILD remains unclear.
    METHODS: We investigated the prophylactic and therapeutic effects of selenite, a selenium derivative, in ILD using a murine model of bleomycin-induced idiopathic pulmonary fibrosis (IPF). We further elucidated the underlying mechanism using in vitro cell models and examined their relevance in human tissue specimens. The therapeutic effect of selenite in bleomycin-administered mice was assessed by respiratory function and histochemical changes. Selenite-induced apoptosis and reactive oxygen species (ROS) production in murine lung fibroblasts were measured.
    RESULTS: Selenite, administered 1 day (inflammation phase) or 8 days (fibrotic phase) after bleomycin, prevented and treated deterioration of lung function and pulmonary fibrosis in mice. Mechanistically, selenite inhibited the proliferation and induced apoptosis of murine lung fibroblasts after bleomycin treatment both in vitro and in vivo. In addition, selenite upregulated glutathione reductase (GR) and thioredoxin reductase (TrxR) in murine lung fibroblasts, but not in lung epithelial cells, upon bleomycin treatment. GR and TrxR inhibition eliminates the therapeutic effects of selenite. Furthermore, we found that GR and TrxR were upregulated in the human lung fibroblasts of IPF patient samples.
    CONCLUSIONS: Selenite induces ROS production and apoptosis in murine lung fibroblasts through GR and TrxR upregulation, thereby providing a therapeutic effect in bleomycin-induced IPF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    硒(Se)在各种生物过程中起着至关重要的作用,并广泛用于制造业。然而,硒氧阴离子的污染也引起了重大的公共卫生问题。微生物转化是使Se氧阴离子解毒并生产具有多种工业潜力的元素硒纳米颗粒(SeNP)的有前途的方法。类酵母真菌是一类重要的环境微生物,但是它们还原硒氧阴离子的机制仍然未知。在这项研究中,我们发现,黑原金黄色葡萄球菌I15可以在48小时内将1.0mM亚硒酸盐减少90%以上,并有效形成细胞内或细胞外球形SeNPs。代谢组学和蛋白质组学分析显示,黑色素A.I15进化出复杂的亚硒酸盐减少机制,涉及多种代谢途径,包括谷胱甘肽/谷胱甘肽还原酶途径,硫氧还蛋白/硫氧还蛋白还原酶途径,铁载体介导的途径,和多种氧化还原酶介导的途径。这项研究提供了有关酵母样真菌中亚硒酸盐还原和SeNPs生物发生机制的第一份报告,并为亚硒酸盐污染的生物修复和功能性有机硒化合物的生产铺平了道路。
    Selenium (Se) plays a critical role in diverse biological processes and is widely used across manufacturing industries. However, the contamination of Se oxyanions also poses a major public health concern. Microbial transformation is a promising approach to detoxify Se oxyanions and produce elemental selenium nanoparticles (SeNPs) with versatile industrial potential. Yeast-like fungi are an important group of environmental microorganisms, but their mechanisms for Se oxyanions reduction remain unknown. In this study, we found that Aureobasidium melanogenum I15 can reduce 1.0 mM selenite by over 90% within 48 h and efficiently form intracellular or extracellular spherical SeNPs. Metabolomic and proteomic analyses disclosed that A. melanogenum I15 evolves a complicated selenite reduction mechanism involving multiple metabolic pathways, including the glutathione/glutathione reductase pathway, the thioredoxin/thioredoxin reductase pathway, the siderophore-mediated pathway, and multiple oxidoreductase-mediated pathways. This study provides the first report on the mechanism of selenite reduction and SeNPs biogenesis in yeast-like fungi and paves an alternative avenue for the bioremediation of selenite contamination and the production of functional organic selenium compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微生物还原亚硒酸盐[Se(Ⅳ)]是一种绿色高效的解毒策略。我们发现Se(Ⅳ)抑制植物乳杆菌BSe的胞外多糖和蛋白质分泌,并损害细胞完整性。在这项研究中,植物乳杆菌BSe通过增加相关酶活性和电子转移来降低Se(Ⅳ)。基因组分析表明,植物乳杆菌BSe应该能够降低Se(Ⅳ)。进一步的转录组分析表明,植物乳杆菌BSe通过上调表面蛋白和转运蛋白的表达来增强其对Se(Ⅳ)的耐受性,从而通过相关的酶促反应和铁载体介导的途径降低细胞外Se(Ⅳ)浓度。植物乳杆菌BSe能够调节与群体感应和双组分系统有关的相关基因的表达,然后根据不同的环境Se(Ⅳ)浓度选择适当的Se(Ⅳ)转化策略。此外,偶氮还原酶首次与Se(Ⅳ)的还原有关。本研究建立了植物乳杆菌还原Se(Ⅳ)的多路径模型,为硒的生物还原和硒的生物地球化学循环提供了新的见解。
    The reduction of selenite [Se(Ⅳ)] by microorganisms is a green and efficient detoxification strategy. We found that Se(Ⅳ) inhibited exopolysaccharide and protein secretion by Lactiplantibacillus plantarum BSe and compromised cell integrity. In this study, L. plantarum BSe reduced Se(Ⅳ) by increasing related enzyme activity and electron transfer. Genomic analysis demonstrated that L. plantarum BSe should be able to reduce Se(Ⅳ). Further transcriptome analysis showed that L. plantarum BSe enhanced its tolerance to Se(Ⅳ) by upregulating the expression of surface proteins and transporters, thus reducing the extracellular Se(Ⅳ) concentration through related enzymatic reactions and siderophore-mediated pathways. Lactiplantibacillus plantarum BSe was able to regulate the expression of related genes involved in quorum sensing and a two-component system and then select appropriate strategies for Se(Ⅳ) transformation in response to varying environmental Se(Ⅳ) concentrations. In addition, azo reductase was linked to the reduction of Se(Ⅳ) for the first time. The present study established a multipath model for the reduction of Se(Ⅳ) by L. plantarum, providing new insights into the biological reduction of Se(Ⅳ) and the biogeochemical cycle of selenium.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    硒的生物利用度受肠道微生物群的关键影响,然而,与硒化合物的相互作用动力学仍未探索。我们的研究发现,L-硒代甲硫氨酸(SeMet)和Se-(甲基)硒代-L-半胱氨酸(MeSeCys)在体外胃肠消化过程中保持稳定。相比之下,亚硒酸盐和L-硒代半胱氨酸(SeCys2)降解约13%和35%。有趣的是,肠道菌群转化的MeSeCys,SeCys2和亚硒酸盐进入SeMet。此外,当SeCys2和亚硒酸盐与肠道微生物群孵育时,他们产生了直径在100到400nm之间的红色硒纳米颗粒,并增强了谷胱甘肽过氧化物酶的活性。这些变化与未分类的_g__Blautia(蛇床子科)的相对丰度增加呈正相关,丹毒科_UCG-003(丹毒科),和未培养的_细菌_g__下颗粒(Ruminococycaceae科)。我们的发现暗示微生物对硒化合物的敏感性不同,可能归因于它们控制硒吸收的不同机制,storage,利用率,和排泄。
    Selenium bioavailability is critically influenced by gut microbiota, yet the interaction dynamics with selenocompounds remain unexplored. Our study found that L-Selenomethionine (SeMet) and Se-(Methyl)seleno-L-cysteine (MeSeCys) maintained stability during in vitro gastrointestinal digestion. In contrast, Selenite and L-Selenocystine (SeCys2) were degraded by approximately 13% and 35%. Intriguingly, gut microflora transformed MeSeCys, SeCys2, and Selenite into SeMet. Moreover, when SeCys2 and Selenite incubated with gut microbiota, they produced red selenium nanoparticles with diameters ranging between 100 and 400 nm and boosted glutathione peroxidase activity. These changes were positively associated with an increased relative abundance of unclassified_g__Blautia (Family Lachnospiraceae), Erysipelotrichaceae_UCG-003 (Family Erysipelatoclostridiaceae), and uncultured_bacterium_g__Subdoligranulum (Family Ruminococcaceae). Our findings implied that differential microbial sensitivities to selenocompounds, potentially attributable to their distinct mechanisms governing selenium uptake, storage, utilization, and excretion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号