Photomorphogenesis

光形态发生
  • 文章类型: Journal Article
    延长的低辅酶5(HY5)和植物色素相互作用因子(PIFs)是两种重要的植物生长光相关调节剂,然而,它们的相互作用仍然难以捉摸。这里,我们报道,活化番茄(Solanumlycopersicum)HY5(SlHY5)触发钙依赖性蛋白激酶SlCPK27的转录。SlCPK27在Ser-252和Ser-308磷酸位点与SlPIF4相互作用并使其磷酸化以促进其降解。SlPIF4主要通过激活SlDWF的转录促进下胚轴伸长,油菜素类固醇(BR)生物合成的关键基因。这样的SlHY5-SlCPK27-SlPIF4-BR级联不仅在光形态发生中起关键作用,而且还调节热形态发生。我们的研究结果揭示了一种先前未确定的机制,该机制将Ca2信号与光信号通路整合在一起,通过调节BR生物合成来调节植物生长,以响应环境光和温度的变化。
    ELONGATED HYPOCOTOYL5 (HY5) and PHYTOCHROME INTERACTING FACTORs (PIFs) are two types of important light-related regulators of plant growth, however, their interplay remains elusive. Here, we report that the activated tomato (Solanum lycopersicum) HY5 (SlHY5) triggers the transcription of a Calcium-dependent Protein Kinase SlCPK27. SlCPK27 interacts with and phosphorylates SlPIF4 at Ser-252 and Ser-308 phosphosites to promote its degradation. SlPIF4 promotes hypocotyl elongation mainly by activating the transcription of SlDWF, a key gene in brassinosteroid (BR) biosynthesis. Such a SlHY5-SlCPK27-SlPIF4-BR cascade not only plays a crucial role in photomorphogenesis but also regulates thermomorphogenesis. Our results uncover a previously unidentified mechanism that integrates Ca2+ signaling with the light signaling pathways to regulate plant growth by modulating BR biosynthesis in response to changes in ambient light and temperature.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    ABI4(ABI4)是协调植物生长和发育的多个方面以及植物对环境胁迫的反应的关键转录因子。ABI4已被证明参与调节幼苗光形态发生;然而,潜在的机制仍然难以捉摸。这里,我们表明,ABI4在调节光形态发生中的作用通常是由蔗糖调节的,但是在所有测试的蔗糖浓度下,ABI4在蓝色(B)光下促进拟南芥幼苗的下胚轴伸长。我们进一步表明ABI4与植物色素相互作用因子4(PIF4),一种特征明确的促进生长的转录因子,并在B光下翻译后促进PIF4蛋白的积累。进一步的分析表明,ABI4直接与B光受体隐色素(CRYs)相互作用,并抑制CRYs与PIF4之间的相互作用,从而减轻了CRY介导的PIF4蛋白积累抑制。此外,而ABI4可以直接激活自己的表达,CRYs增强,而PIF4抑制,ABI4介导的ABI4启动子的激活。一起,我们的研究表明,ABI4-PIF4模块在介导CRY诱导的拟南芥B光信号中起重要作用。
    ABSCISIC ACID-INSENSITIVE 4 (ABI4) is a pivotal transcription factor which coordinates multiple aspects of plant growth and development as well as plant responses to environmental stresses. ABI4 has been shown to be involved in regulating seedling photomorphogenesis; however, the underlying mechanism remains elusive. Here, we show that the role of ABI4 in regulating photomorphogenesis is generally regulated by sucrose, but ABI4 promotes hypocotyl elongation of Arabidopsis seedlings under blue (B) light under all tested sucrose concentrations. We further show that ABI4 physically interacts with PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a well-characterized growth-promoting transcription factor, and post-translationally promotes PIF4 protein accumulation under B light. Further analyses indicate that ABI4 directly interacts with the B light photoreceptors cryptochromes (CRYs) and inhibits the interactions between CRYs and PIF4, thus relieving CRY-mediated repression of PIF4 protein accumulation. In addition, while ABI4 could directly activate its own expression, CRYs enhance, whereas PIF4 inhibits, ABI4-mediated activation of the ABI4 promoter. Together, our study demonstrates that the ABI4-PIF4 module plays an important role in mediating CRY-induced B light signaling in Arabidopsis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光照是促进食用菌菌丝体生长发育的重要环境因素。在白光下,香菇的菌丝体颜色在其生长阶段发生变化。探讨可见光对菌丝形态发生的影响,进行了比较转录组学分析.该分析揭示了在黑暗和光照条件下培养时支持S.vaninii菌丝生长和发育的分子过程。从分析来看,使用Illumina原始读数比对13,643个基因。其中,596个基因在白光照射下表现出显著的表达变化。具体来说,226个基因上调,370个基因下调,跨越55种不同的代谢途径。我们进一步分类了差异表达基因(DEGs),这些基因在光形态发生中起作用,信号转导,碳水化合物代谢,和黑色素的产生,在其他过程中。一些还涉及细胞周期调节和呼吸功能的差异表达。使用RT-qPCR对差异表达的转录物的验证显示与9个转录物的RNA-Seq数据完全一致。同时,光照对Vaninii中的生物活性成分有抑制作用。这些发现提供了有价值的见解转录变化和分子机制驱动的颜色变化在光照下的瓦尼尼。光反应调控机制的进一步研究提供了依据。
    Light is a vital environmental factor that promotes the growth and development of edible fungi mycelium. Under white light, the mycelium color of Sanghuangporus vaninii shifts during its growth stages. To investigate the impact of visible light on mycelial morphogenesis, a comparative transcriptomic analysis was conducted. This analysis revealed the molecular processes that underpin mycelial growth and development in S. vaninii when cultured in both darkness and light conditions. From the analysis, 13,643 genes were aligned using Illumina raw reads. Of these, 596 genes exhibited significant expression changes under white light exposure. Specifically, 226 genes were upregulated and 370 downregulated, spanning 55 different metabolic pathways. We further classified differentially expressed genes (DEGs), these genes play roles in photomorphogenesis, signal transduction, carbohydrate metabolism, and melanin production, among other processes. Some are also implicated in cell cycle regulation and the differential expression of respiratory functions. The validation of the differentially expressed transcripts using qRT-PCR showed complete agreement with RNA-Seq data for 9 transcripts. Meanwhile, the light had an inhibitory effect on the bioactive components in S. vaninii. These findings offer valuable insights into the transcriptional shifts and molecular mechanisms driving the color change in S. vaninii under light exposure, providing a basis for further research into mechanisms of light-response regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转录因子ELONGATedHY5(HY5)是幼苗光形态发生的中心中心。E3泛素(Ub)连接酶成分光形态发生1(COP1)通过泛素化抑制HY5蛋白积累。然而,HY5去泛素化的过程,它拮抗E3连接酶介导的泛素化以维持HY5稳态从未被研究过。这里,我们鉴定了拟南芥去泛素化酶,Ub特异性蛋白酶14(UBP14)与HY5物理相互作用并通过去泛素化增强其蛋白质稳定性。缺乏UBP14功能的da3-1突变体表现出长的下胚轴表型,UBP14缺乏导致HY5在黑暗至光照期间无法快速积累。此外,UBP14优选稳定HY5的非磷酸化形式,其更容易与下游靶基因结合。HY5促进UBP14的表达和蛋白质积累,以促进光形态发生。因此,我们的发现建立了UBP14通过去泛素化来稳定HY5蛋白以促进拟南芥中的光形态发生的机制。
    Transcription factor ELONGATED HYPOCOTYL5 (HY5) is the central hub for seedling photomorphogenesis. E3 ubiquitin (Ub) ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) inhibits HY5 protein accumulation through ubiquitination. However, the process of HY5 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain HY5 homeostasis has never been studied. Here, we identified that Arabidopsis thaliana deubiquitinating enzyme, Ub-SPECIFIC PROTEASE 14 (UBP14) physically interacts with HY5 and enhances its protein stability by deubiquitination. The da3-1 mutant lacking UBP14 function exhibited a long hypocotyl phenotype, and UBP14 deficiency led to the failure of rapid accumulation of HY5 during dark to light. In addition, UBP14 preferred to stabilize nonphosphorylated form of HY5 which is more readily bound to downstream target genes. HY5 promoted the expression and protein accumulation of UBP14 for positive feedback to facilitate photomorphogenesis. Our findings thus established a mechanism by which UBP14 stabilizes HY5 protein by deubiquitination to promote photomorphogenesis in A. thaliana.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光是最重要的环境因素之一,可以精确地控制植物的各种生理和发育过程。含有B盒蛋白质(BBXs)在光依赖性发育的调节中起核心作用。在这项研究中,我们报告说,BBX9是光信号的正调节剂。BBX9与红光光感受器植物色素B(phyB)和转录因子植物色素相互作用因子(PIFs)相互作用。phyB促进BBX9在光照下的稳定,而BBX9抑制PIF的转录激活活性。反过来,PIF直接与BBX9的启动子结合以抑制其转录。另一方面,BBX9与光信号的正调节剂相关,BBX21,并增强其生化活性。BBX21与BBX9的启动子区结合并在转录上上调其表达。总的来说,这项研究揭示了BBX9与PIF形成负反馈回路,与BBX21形成正反馈回路,以确保植物适应波动的光照条件。
    Light is one of the most essential environmental factors that tightly and precisely control various physiological and developmental processes in plants. B-box CONTAINING PROTEINs (BBXs) play central roles in the regulation of light-dependent development. In this study, we report that BBX9 is a positive regulator of light signaling. BBX9 interacts with the red light photoreceptor PHYTOCHROME B (phyB) and transcription factors PHYTOCHROME-INTERACTING FACTORs (PIFs). phyB promotes the stabilization of BBX9 in light, while BBX9 inhibits the transcriptional activation activity of PIFs. In turn, PIFs directly bind to the promoter of BBX9 to repress its transcription. On the other hand, BBX9 associates with the positive regulator of light signaling, BBX21, and enhances its biochemical activity. BBX21 associates with the promoter regions of BBX9 and transcriptionally up-regulates its expression. Collectively, this study unveiled that BBX9 forms a negative feedback loop with PIFs and a positive one with BBX21 to ensure that plants adapt to fluctuating light conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白S-亚硝基化,其定义为一氧化氮(NO)与半胱氨酸残基的巯基共价连接,已知在植物发育和胁迫响应中起关键作用。NO促进幼苗的光形态发生,并且NO的发射被光增强。然而,蛋白质S-亚硝基化在植物光形态发生中的功能尚不清楚。E3连接酶组成光形态发生1(COP1)和转录因子细长下胚型5(HY5)拮抗调节幼苗光形态发生。COP1通过靶向26S蛋白酶体降解的光形态发生启动子如HY5来抑制植物的光形态发生。这里,我们报道COP1在体外是S-亚硝基化的。质谱分析显示,两个进化上保守的残基,COP1的WD40结构域中的半胱氨酸425和半胱氨酸607是S-亚硝基化的。S-亚硝基化谷胱甘肽(GSNO)是蛋白质S-亚硝基化的重要生理NO供体。拟南芥(拟南芥)gsnor1-3突变体,积累更高水平的GSNO,积累了比野生型(WT)更高的HY5水平,表明COP1活性被抑制。蛋白质S-亚硝基化可以在植物中被硫氧还蛋白-h5(TRXh5)逆转。的确,COP1与TRXh5及其紧密同源物TRXh3直接相互作用。此外,过氧化氢酶3(CAT3)充当转硝基转移酶,将NO转移到其靶蛋白如GSNO还原酶(GSNOR)。我们发现CAT3与植物中的COP1相互作用。一起来看,我们的数据表明,COP1的活性可能被NO通过S-亚硝基化抑制,以促进HY5的积累和光形态发生。
    Protein S-nitrosylation, which is defined by the covalent attachment of nitric oxide (NO) to the thiol group of cysteine residues, is known to play critical roles in plant development and stress responses. NO promotes seedling photomorphogenesis and NO emission is enhanced by light. However, the function of protein S-nitrosylation in plant photomorphogenesis is largely unknown. E3 ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and transcription factor ELONGATED HYPOCOTYL 5 (HY5) antagonistically regulate seedling photomorphogenesis. COP1 inhibits plant photomorphogenesis by targeting photomorphogenic promoters like HY5 for 26S proteasome degradation. Here, we report that COP1 is S-nitrosylated in vitro. Mass spectrometry analyses revealed that two evolutionarily well conserved residues, cysteine 425 and cysteine 607, in the WD40 domain of COP1 are S-nitrosylated. S-nitrosylated glutathione (GSNO) is an important physiological NO donor for protein S-nitrosylation. The Arabidopsis (Arabidopsis thaliana) gsnor1-3 mutant, which accumulates higher level of GSNO, accumulated higher HY5 levels than wildtype (WT), indicating that COP1 activity is inhibited. Protein S-nitrosylation can be reversed by Thioredoxin-h5 (TRXh5) in plants. Indeed, COP1 interacts directly with TRXh5 and its close homolog TRXh3. Moreover, catalase 3 (CAT3) acts as a transnitrosylase that transfers NO to its target proteins like GSNO reductase (GSNOR). We found that CAT3 interacts with COP1 in plants. Taken together, our data indicate that the activity of COP1 is likely inhibited by NO via S-nitrosylation to promote the accumulation of HY5 and photomorphogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    隐色素(CRY)充当蓝光光感受器,以调节各种植物生理过程,包括光形态发生和DNA双链断裂(DSB)的修复。ADA2b是一种保守的转录共激活因子,参与多种植物发育过程。已知ADA2b与CRY相互作用以介导蓝光促进的DSB修复。ADA2b是否可能参与CRYs介导的光形态发生尚不清楚。在这里,我们显示ADA2b在蓝光下抑制下胚轴伸长和下胚轴细胞伸长。我们发现,含有SWIRM结构域的C末端介导了蓝光下ADA2b与CRY的蓝光依赖性相互作用。此外,ADA2b和CRYs共同调节蓝光下胚轴伸长相关基因的表达。根据以前的研究和这些结果,我们认为ADA2b在蓝光介导的DNA损伤修复和光形态发生中起着双重作用。
    Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    COP1(本构光形态发生1),幼苗光形态发生的阻遏物,受到光的严格控制。在拟南芥中,COP1主要作为大型E3连接酶复合物的一部分,并靶向关键的光信号因子进行泛素化和降解。在光线感知下,COP1的作用由活性光感受器精确调节。在幼苗发育过程中,光在调节幼苗形态发生中起着主导作用,包括抑制下胚轴伸长,子叶的开放和扩展,和叶绿体发育。这些可见的形态学变化显然是由分子作用网络引起的。在这次审查中,我们总结了目前有关COP1在介导光控幼苗发育中的分子作用的知识。
    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC1), a repressor of seedling photomorphogenesis, is tightly controlled by light. In Arabidopsis, COP1 primarily acts as a part of large E3 ligase complexes and targets key light-signaling factors for ubiquitination and degradation. Upon light perception, the action of COP1 is precisely modulated by active photoreceptors. During seedling development, light plays a predominant role in modulating seedling morphogenesis, including inhibition of hypocotyl elongation, cotyledon opening and expansion, and chloroplast development. These visible morphological changes evidently are resulted from networks of molecular action. In this review, we summarize the current knowledge about the molecular role of COP1 in mediating light-controlled seedling development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光形态发生是一种依赖于光的植物生长和发育程序。作为光形态发生的核心调节剂,蛋白转录活性和蛋白稳定性的动态变化会影响蛋白5(HY5);然而,对这些过程的中介者知之甚少。这里,我们鉴定了光调节蛋白激酶1(PPK1),与拟南芥中的HY5相互作用并磷酸化,作为一个这样的调解人。PPK1对HY5的磷酸化对于建立与B-BOX蛋白24(BBX24)和本构形成光1(COP1)的高亲和力结合至关重要,分别抑制HY5的转录活性和促进HY5的降解。因此,PPKs不仅在光照条件下调节HY5与其靶基因的结合,而且在植物从光照转移到黑暗时调节HY5降解。我们的数据确定了HY5上PPK介导的磷酸化代码,该代码整合了HY5调节的分子机制,以精确控制植物的光形态发生。
    Photomorphogenesis is a light-dependent plant growth and development program. As the core regulator of photomorphogenesis, ELONGATED HYPOCOTYL 5 (HY5) is affected by dynamic changes in its transcriptional activity and protein stability; however, little is known about the mediators of these processes. Here, we identified PHOTOREGULATORY PROTEIN KINASE 1 (PPK1), which interacts with and phosphorylates HY5 in Arabidopsis, as one such mediator. The phosphorylation of HY5 by PPK1 is essential to establish high-affinity binding with B-BOX PROTEIN 24 (BBX24) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), which inhibit the transcriptional activity and promote the degradation of HY5, respectively. As such, PPKs regulate not only the binding of HY5 to its target genes under light conditions but also HY5 degradation when plants are transferred from light to dark. Our data identify a PPK-mediated phospho-code on HY5 that integrates the molecular mechanisms underlying the regulation of HY5 to precisely control plant photomorphogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    UV-B(UV-B,280-315nm)是太阳辐射的次要组成部分,但它对植物的生长和发育具有重要的调节作用。太阳能UV-B调节植物代谢的许多方面,通过改变数百个基因的表达来实现形态学和生理学。脱水早期反应15(ERD15)是干旱诱导的快速反应基因,以前称为脱落酸(ABA)信号通路的负调节因子。目前尚不清楚ERD15是否参与UV-B诱导的光形态发生。以前,我们报道BBX24转录因子负调控UV-B信号。在本研究中,我们确定ERD15参与UV-B光形态发生,作为表型的正调节因子,生理和分子水平。我们的结果表明,ERD15的表达被UV-B抑制,以UV-B依赖性方式抑制拟南芥下胚轴的伸长,促进相关UV-B信号基因的表达,增加拟南芥在UV-B下的总抗氧化能力。遗传杂交结果显示ERD15作用于BBX24下游,BBX24蛋白通过与其启动子结合介导ERD15的表达。因此,ERD15是UV-B信号通路的新型正调节因子,它位于BBX24的下游,受BBX24蛋白调控,参与UV-B光形态发生。
    Ultraviolet-B (UV-B, 280-315 nm) is a minor component of solar radiation, but it has a major regulatory impact on plant growth and development. Solar UV-B regulates numerous aspects of plant metabolism, morphology and physiology through altering the expression of hundreds of genes. EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) is a drought-induced rapid response gene, formerly known as a negative regulator of the abscisic acid (ABA) signaling pathway. It is unclear whether ERD15 is involved in UV-B-induced photomorphogenesis. Previously, we reported that the BBX24 transcriptional factor negatively regulated UV-B signaling. In the present study, we identified that ERD15 is involved in UV-B photomorphogenesis as a positive regulator at phenotypic, physiological and molecular levels. Our results indicated that ERD15 expression is suppressed by UV-B, inhibited the elongation of Arabidopsis hypocotyls in a UV-B-dependent manner, promoted the expression of related UV-B signaling genes and increased the total antioxidant capacity of Arabidopsis under UV-B. Genetic hybridization results show that ERD15 acts downstream of BBX24, and BBX24 protein mediated the expression of ERD15 by binding to its promoter. Thus, ERD15 is a novel positive regulator of the UV-B signaling pathway, which is downstream of BBX24 and regulated by BBX24 protein to participate in UV-B photomorphogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号