Microscopy, Electron

显微镜,电子
  • 文章类型: Journal Article
    生物分子缩合物由成分内的固有无序区域和/或相互作用域赋予的多价相互作用触发。虽然光学显微镜提供了强大的工具来研究细胞内冷凝物的动力学,电子显微镜(EM)可以更详细地了解它们的超微结构和与膜系统的空间连通性。在这一章中,我们描述了通过基于高压冷冻的EM结合免疫金标记和相关的光学电子显微镜技术检测植物细胞中无膜冷凝物的方法,这可能有利于研究人员在未来的研究。
    Biomolecular condensates are triggered by multivalent interactions conferred by the intrinsically disordered regions and/or interacting domains within the constituents. While light microscopy has provided powerful tools to study the dynamics of intracellular condensates, electron microscopy (EM) gives more detailed insights into their ultrastructure and spatial connectivity with membrane system. In this chapter, we describe the methods for detecting the membraneless condensates in plant cells by high-pressure freezing -based EM coupled with immuno-gold labeling and correlative light electron microscopy techniques, which may benefit researchers in future studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    巨自噬,自噬以后,在通过双膜自噬体降解有害或不需要的细胞成分中起着至关重要的作用。自噬体与液泡融合后,降解的材料随后被回收以产生大分子,有助于细胞内稳态,新陈代谢,和植物的胁迫耐受性。自噬过程中的一个标志是形成称为吞噬团的隔离膜结构,它经历多个步骤成为一个完整的双膜自噬体。近年来已经开发了观察和量化自噬过程的方法,这极大地促进了植物细胞中自噬体生物发生的知识。在这一章中,我们将介绍两种方法来解剖拟南芥植物细胞中的自噬体相关结构,包括相关的光学和电子显微镜,绘制自噬体结构的超微结构特征,和延时成像来监测自噬体形成过程中自噬机制的时间募集。
    Macroautophagy, hereafter autophagy, plays a crucial role in the degradation of harmful or unwanted cellular components through a double-membrane autophagosome. Upon autophagosome fusion with the vacuole, the degraded materials are subsequently recycled to generate macromolecules, contributing to cellular homeostasis, metabolism, and stress tolerance in plants. A hallmark during autophagy is the formation of isolation membrane structure named as phagophore, which undergoes multiple steps to become as a complete double-membrane autophagosome. Methodologies have been developed in recent years to observe and quantify the autophagic process, which greatly advance knowledge of autophagosome biogenesis in plant cells. In this chapter, we will introduce two methods to dissect the autophagosome-related structures in the Arabidopsis plant cells, including the correlative light and electron microscopy, to map the ultrastructural feature of autophagosomal structures, and time-lapse imaging to monitor the temporal recruitment of autophagy machinery during autophagosome formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大规模电子显微镜(EM)通过连续扫描大量样品切片,可以在突触水平上重建脑连接体。获取的大EM数据集提出了高精度图像镶嵌的巨大挑战。目前,它只是遵循为自然图像设计的传统算法,通常只由几块瓷砖组成,使用单一类型的关键点功能,这将牺牲速度以获得更强的性能。即便如此,在为大型EM数据拼接成千上万个瓷砖的过程中,错误仍然是不可避免的和多种多样的。此外,目前还没有一个合适的指标来定量评估生物医学EM图像的拼接.在这里,我们提出了一种两阶段的错误检测方法来改善EM图像的镶嵌。它首先使用基于点的错误检测与混合特征框架相结合,以加快拼接计算,同时保持高精度。以下是使用新设计的EM拼接图像质量评估(EMSIQA)度量对未解决错误的第二次检测。新颖的基于检测的马赛克管道在大型EM数据集上进行了测试,与现有方法相比,被证明更有效,更准确。
    Large-scale electron microscopy (EM) has enabled the reconstruction of brain connectomes at the synaptic level by serially scanning over massive areas of sample sections. The acquired big EM data sets raise the great challenge of image mosaicking at high accuracy. Currently, it simply follows the conventional algorithms designed for natural images, which are usually composed of only a few tiles, using a single type of keypoint feature that would sacrifice speed for stronger performance. Even so, in the process of stitching hundreds of thousands of tiles for large EM data, errors are still inevitable and diverse. Moreover, there has not yet been an appropriate metric to quantitatively evaluate the stitching of biomedical EM images. Here we propose a two-stage error detection method to improve the EM image mosaicking. It firstly uses point-based error detection in combination with a hybrid feature framework to expedite the stitching computation while maintaining high accuracy. Following is the second detection of unresolved errors with a newly designed metric of EM stitched image quality assessment (EMSIQA). The novel detection-based mosaicking pipeline is tested on large EM data sets and proven to be more effective and as accurate when compared with existing methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核糖体RNA(rRNA)在氨基酸结合中起着至关重要的作用,这决定了蛋白质的一级结构。蛋白质合成过程中其细胞内分布和动力学的可视化可以更好地理解相关的生物学本质。然而,仍然缺乏能够在纳米尺度进行多模态成像的靶向活细胞rRNA的适当工具.这里,我们合理设计了一系列三联吡啶铵铱(III)配合物,其中一种能够选择性标记活细胞中的rRNA。它的金属核心和光稳定性质允许在粗面内质网上发现的rRNA的进一步超分辨率STED成像,分辨率约为40nm,在相关的光和电子显微镜(CLEM)下具有良好的相关性。有趣的是,Ir(III)复合物显示了活细胞中的rRNA动力学,同时在纳米尺度上促进蛋白质合成.我们的工作提供了一种多功能工具,可以在光学和电子显微镜下同步可视化rRNA,这提供了对生物系统中rRNA进化的更好理解。
    Ribosomal RNA (rRNA) plays a vital role in binding amino acids together, which dictates the primary structure of a protein. Visualization of its intracellular distribution and dynamics during protein synthesis enables a better understanding of the correlated biological essence. However, appropriate tools targeting live cell rRNA that are capable of multimodal imaging at the nanoscale are still lacking. Here, we rationally designed a series of terpyridine ammonium iridium(III) complexes, one of which is capable of selectively labeling rRNA in living cells. Its metal core and photostable nature allow further super-resolution STED imaging of rRNA found on the rough endoplasmic reticulum at a ∼40 nm resolution that is well correlated under correlative light and electron microscopy (CLEM). Interestingly, the Ir(III) complex demonstrated rRNA dynamics in living cells while boosting protein synthesis at the nanoscale. Our work offers a versatile tool to visualize rRNA synchronously under optical and electron microscopy, which provides a better understanding of rRNA evolution in living systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生殖系细胞对于将遗传信息传递给生物有机体的后代至关重要。虽然在大多数动物中,它们在胚胎发育过程中与体细胞的分化是有据可查的,植物生殖系细胞的调控机制尚不清楚。为了彻底研究其超微结构随发育时间的复杂形态转变,整个植物组织的纳米级三维重建是必要的,完全可以通过电子显微镜成像。本文提出了一种全流程框架,旨在从连续电子显微镜图像中重建大量植物组织。该框架确保重建结果的端到端直接输出,包括拓扑网络和形态分析。拟议的3D细胞对齐,去噪,和实例分割流水线(3DCADS)利用深度学习为电子显微镜图像系列提供细胞实例分割工作流程,确保具有高计算效率的准确和强大的3D细胞重建。该流水线涉及五个阶段:电子显微镜系列图像的配准;图像增强和去噪;使用基于Transformer的神经网络进行语义分割;通过基于超体素的聚类算法进行实例分割;以及对重建结果的自动分析和统计评估,与拓扑连接的映射。在植物组织地面实况数据集上验证了3DCADS模型的精度,在整体准确性方面优于传统基线模型和深度学习基线。该框架适用于拟南芥花药减数分裂早期阶段的重建,从而形成拓扑连接网络,并分析细胞分布的形态参数和特征。该实验强调了3DCADS模型在生物组织鉴定中的潜力及其在植物细胞发育定量分析中的意义。对于检查植物发育中不同遗传表型和突变的样品至关重要。此外,本文讨论了拟南芥生殖系细胞的调控机制和雄蕊细胞减数分裂前的发育,为植物从体细胞到种系细胞命运的转变提供了新的见解。
    Germline cells are critical for transmitting genetic information to subsequent generations in biological organisms. While their differentiation from somatic cells during embryonic development is well-documented in most animals, the regulatory mechanisms initiating plant germline cells are not well understood. To thoroughly investigate the complex morphological transformations of their ultrastructure over developmental time, nanoscale 3D reconstruction of entire plant tissues is necessary, achievable exclusively through electron microscopy imaging. This paper presents a full-process framework designed for reconstructing large-volume plant tissue from serial electron microscopy images. The framework ensures end-to-end direct output of reconstruction results, including topological networks and morphological analysis. The proposed 3D cell alignment, denoise, and instance segmentation pipeline (3DCADS) leverages deep learning to provide a cell instance segmentation workflow for electron microscopy image series, ensuring accurate and robust 3D cell reconstructions with high computational efficiency. The pipeline involves five stages: the registration of electron microscopy serial images; image enhancement and denoising; semantic segmentation using a Transformer-based neural network; instance segmentation through a supervoxel-based clustering algorithm; and an automated analysis and statistical assessment of the reconstruction results, with the mapping of topological connections. The 3DCADS model\'s precision was validated on a plant tissue ground-truth dataset, outperforming traditional baseline models and deep learning baselines in overall accuracy. The framework was applied to the reconstruction of early meiosis stages in the anthers of Arabidopsis thaliana, resulting in a topological connectivity network and analysis of morphological parameters and characteristics of cell distribution. The experiment underscores the 3DCADS model\'s potential for biological tissue identification and its significance in quantitative analysis of plant cell development, crucial for examining samples across different genetic phenotypes and mutations in plant development. Additionally, the paper discusses the regulatory mechanisms of Arabidopsis thaliana\'s germline cells and the development of stamen cells before meiosis, offering new insights into the transition from somatic to germline cell fate in plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:平面细胞极性(PCP)信号,对于活动纤毛的均匀排列和定向跳动至关重要,已在多纤毛上皮中进行了研究。作为连接中耳和鼻咽的复杂结构,咽鼓管(ET)在耳鼻喉疾病的发作中很重要。然而,PCP信令,包括对ET中的纤毛运动和清除功能很重要的方向,没有被研究过。我们评估了ET上皮中的PCP。
    方法:小鼠ET的形态测量检查。
    方法:我们进行了电子显微镜检查,以评估小鼠ET的纤毛极性,随着免疫组织化学分析PCP蛋白在ET上皮中的定位。
    结果:我们在ET上皮中发现了PCP。在单个和相邻细胞中,活动纤毛沿相同方向排列;这种排列在多纤毛细胞中表现为纤毛极性。此外,PCP蛋白不对称地位于ET平面中的相邻细胞之间。
    结论:多纤毛ET上皮表现出极化,提示可能对ET功能至关重要的新结构特征。
    方法:NA喉镜,2024.
    OBJECTIVE: Planar cell polarity (PCP) signaling, essential for uniform alignment and directional beating of motile cilia, has been investigated in multiciliated epithelia. As a complex structure connecting the middle ear to the nasopharynx, the eustachian tube (ET) is important in the onset of ear-nose-throat diseases. However, PCP signaling, including the orientation that is important for ciliary motility and clearance function in the ET, has not been studied. We evaluated PCP in the ET epithelium.
    METHODS: Morphometric examination of the mouse ET.
    METHODS: We performed electron microscopy to assess ciliary polarity in the mouse ET, along with immunohistochemical analysis of PCP protein localization in the ET epithelium.
    RESULTS: We discovered PCP in the ET epithelium. Motile cilia were aligned in the same direction in individual and neighboring cells; this alignment manifested as ciliary polarity in multiciliated cells. Additionally, PCP proteins were asymmetrically localized between adjacent cells in the plane of the ET.
    CONCLUSIONS: The multiciliated ET epithelium exhibits polarization, suggesting novel structural features that may be critical for ET function.
    METHODS: NA Laryngoscope, 134:3795-3801, 2024.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物大分子在不同环境中的结构多样性导致了对细胞功能至关重要的酶学过程的复杂性。荧光共振能量转移和电子显微镜用于研究T4DNA连接酶催化缺口DNA连接的酶促反应。数据显示连接酶-AMP复合物和连接酶-AMP-DNA复合物均可具有四种构象。这一发现表明了四种连接反应途径的平行发生,每个特征在于保留在连接酶-AMP-DNA复合物中的连接酶-AMP复合物的特定构象。值得注意的是,这些复合物的DNA弯曲角度约为0°,20°,60°,或100°。平行反应的机制挑战了在多种构象之间发生的简单顺序反应步骤的传统观念。结果提供了对T4DNA连接酶的动态构象变化和通用属性的见解,并表明平行的多个反应途径可能对应于不同的T4DNA连接酶功能。这种机制可能已经发展成为一种跨进化历史的自适应策略,以导航复杂的环境。
    The structural diversity of biological macromolecules in different environments contributes complexity to enzymological processes vital for cellular functions. Fluorescence resonance energy transfer and electron microscopy are used to investigate the enzymatic reaction of T4 DNA ligase catalyzing the ligation of nicked DNA. The data show that both the ligase-AMP complex and the ligase-AMP-DNA complex can have four conformations. This finding suggests the parallel occurrence of four ligation reaction pathways, each characterized by specific conformations of the ligase-AMP complex that persist in the ligase-AMP-DNA complex. Notably, these complexes have DNA bending angles of ≈0°, 20°, 60°, or 100°. The mechanism of parallel reactions challenges the conventional notion of simple sequential reaction steps occurring among multiple conformations. The results provide insights into the dynamic conformational changes and the versatile attributes of T4 DNA ligase and suggest that the parallel multiple reaction pathways may correspond to diverse T4 DNA ligase functions. This mechanism may potentially have evolved as an adaptive strategy across evolutionary history to navigate complex environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    病毒学的历史,以变革性突破为标志,跨越微生物学,生物化学,遗传学,和分子生物学。从1796年詹纳天花疫苗的发展到20世纪的超滤和电子显微镜等创新,病毒学领域经历了重大发展。1898年,Beijerinck为病毒学奠定了概念基础,标志着学科发展的关键时刻。RichardShope在1933年对甲型流感病毒研究的进展进一步加深了我们对呼吸道病原体的理解。此外,1935年,斯坦利将病毒确定为固体颗粒,为病毒学领域提供了实质性进展。关键的里程碑包括巴尔的摩和Temin在1970年阐明了逆转录酶,20世纪末发现了病毒和癌症的联系,以及Sinoussi发现的艾滋病毒,Montagnier,和1983年的加洛,此后一直影响着艾滋病的研究。在21世纪,基因技术等突破,mRNA疫苗,和噬菌体展示工具在病毒学中实现,展示了其与分子生物学整合的潜力。COVID-19疫苗的成就凸显了病毒学对全球健康的适应性。
    The history of virology, which is marked by transformative breakthroughs, spans microbiology, biochemistry, genetics, and molecular biology. From the development of Jenner\'s smallpox vaccine in 1796 to 20th-century innovations such as ultrafiltration and electron microscopy, the field of virology has undergone significant development. In 1898, Beijerinck laid the conceptual foundation for virology, marking a pivotal moment in the evolution of the discipline. Advancements in influenza A virus research in 1933 by Richard Shope furthered our understanding of respiratory pathogens. Additionally, in 1935, Stanley\'s determination of viruses as solid particles provided substantial progress in the field of virology. Key milestones include elucidation of reverse transcriptase by Baltimore and Temin in 1970, late 20th-century revelations linking viruses and cancer, and the discovery of HIV by Sinoussi, Montagnier, and Gallo in 1983, which has since shaped AIDS research. In the 21st century, breakthroughs such as gene technology, mRNA vaccines, and phage display tools were achieved in virology, demonstrating its potential for integration with molecular biology. The achievements of COVID-19 vaccines highlight the adaptability of virology to global health.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    溶酶体是对稳态至关重要的降解和信号中心,发展和年龄1。为了满足不同的细胞需求,溶酶体通过不断融合和裂变2,3重塑其形态和功能。对裂变的分子基础知之甚少。这里我们鉴定了HPO-27,一种保守的HEAT重复蛋白,作为秀丽隐杆线虫的溶酶体分裂因子。HPO-27的损失损害溶酶体裂变并导致最终塌陷的过度管状网络。HPO-27及其人类同源物MROH1被RAB-7募集到溶酶体中,并在断裂位点富集。超分辨率成像,阴性染色电子显微镜和体外重建实验表明,HPO-27和MROH1自组装介导蠕虫和哺乳动物细胞中溶酶体小管的收缩和断裂,分别,并组装以在体外切断支撑的膜管。HPO-27的丢失影响溶酶体形态,完整性和降解活性,这损害了动物的发育和寿命。因此,HPO-27和MROH1充当自组装分裂因子以维持溶酶体稳态和功能。
    Lysosomes are degradation and signalling centres crucial for homeostasis, development and ageing1. To meet diverse cellular demands, lysosomes remodel their morphology and function through constant fusion and fission2,3. Little is known about the molecular basis of fission. Here we identify HPO-27, a conserved HEAT repeat protein, as a lysosome scission factor in Caenorhabditis elegans. Loss of HPO-27 impairs lysosome fission and leads to an excessive tubular network that ultimately collapses. HPO-27 and its human homologue MROH1 are recruited to lysosomes by RAB-7 and enriched at scission sites. Super-resolution imaging, negative-staining electron microscopy and in vitro reconstitution assays reveal that HPO-27 and MROH1 self-assemble to mediate the constriction and scission of lysosomal tubules in worms and mammalian cells, respectively, and assemble to sever supported membrane tubes in vitro. Loss of HPO-27 affects lysosomal morphology, integrity and degradation activity, which impairs animal development and longevity. Thus, HPO-27 and MROH1 act as self-assembling scission factors to maintain lysosomal homeostasis and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号