Microelectrodes

微电极
  • 文章类型: Journal Article
    具有组织可植入微电极的电化学方法由于其优越的时空分辨率以及高选择性和灵敏度,为实时监测体内神经化学动力学提供了极好的平台。然而,电极植入不可避免地损害脑组织,上调活性氧水平,并引发神经炎症反应,导致神经化学事件的定量不可靠。在这里,我们报道了一个多功能传感平台,用于体内无炎症分析,使用原子级工程化Fe单原子催化剂,该催化剂既可作为具有抗氧化活性的单原子纳米酶,又可作为多巴胺氧化的电极材料.通过高温热解和催化性能筛选,我们制造了一系列具有不同配位构型的Fe单原子纳米酶,发现具有FeN4的Fe单原子纳米酶对模拟过氧化氢酶和超氧化物歧化酶以及消除羟基自由基的活性最高。同时还具有对多巴胺氧化的高电极反应性。这些双重功能赋予了基于单原子纳米酶的传感器抗炎能力,在活的雄性大鼠大脑中实现精确的多巴胺传感。这项研究为设计具有原子精度工程单原子催化剂的无炎症电化学传感平台提供了途径。
    Electrochemical methods with tissue-implantable microelectrodes provide an excellent platform for real-time monitoring the neurochemical dynamics in vivo due to their superior spatiotemporal resolution and high selectivity and sensitivity. Nevertheless, electrode implantation inevitably damages the brain tissue, upregulates reactive oxygen species level, and triggers neuroinflammatory response, resulting in unreliable quantification of neurochemical events. Herein, we report a multifunctional sensing platform for inflammation-free in vivo analysis with atomic-level engineered Fe single-atom catalyst that functions as both single-atom nanozyme with antioxidative activity and electrode material for dopamine oxidation. Through high-temperature pyrolysis and catalytic performance screening, we fabricate a series of Fe single-atom nanozymes with different coordination configurations and find that the Fe single-atom nanozyme with FeN4 exhibits the highest activity toward mimicking catalase and superoxide dismutase as well as eliminating hydroxyl radical, while also featuring high electrode reactivity toward dopamine oxidation. These dual functions endow the single-atom nanozyme-based sensor with anti-inflammatory capabilities, enabling accurate dopamine sensing in living male rat brain. This study provides an avenue for designing inflammation-free electrochemical sensing platforms with atomic-precision engineered single-atom catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    原位亚细胞安培分析对于理解细胞内氧化还原生物化学和亚细胞异质性至关重要。不幸的是,细胞内部的超小尺寸和复杂的微环境对实现这一目标提出了巨大的挑战。为了应对挑战,一个最小化的活微生物传感器已在这项工作中制造安培分析。这里,通过制造二聚体微电极作为工作电极,在安装活的电活性细菌(EAB)作为换能器时,感觉EAB的细胞外向电子转移(EET)与乳酸浓度相关,它是电化学记录的,因此显示电信号输出用于检测。具体而言,S.oneidenis修饰的dimidididiate微电极(S.O.@GNE-NPE)用作集成的电分析设备,以原位产生电信号。建立的微电路提供了前所未有的精度和灵敏度,有助于亚细胞安培测量。微生物传感器在0-60mM的浓度范围内显示出线性响应,检测限(LOD)为0.3mM。微传感器还表现出良好的对干扰的选择性。此外,乳酸的细胞内分析提供了“Warburg效应”导致的癌细胞中乳酸代谢增强的直接证据。这项工作展示了一个纳米的例子-,已集成在EAB修饰的dimididididiate微电极上的生物和电技术,并通过这种集成实现细胞内生物传感应用。它可能为微/纳米技术与感官EAB的结合提供新的策略,以开发必要的生物电子设备。
    Subcellularly amperometric analysis in situ is crucial for understanding intracellular redox biochemistry and subcellular heterogeneity. Unfortunately, the ultra-small size and complex microenvironment inside the cell pose a great challenge to achieve this goal. To address the challenge, a minimized living microbial sensor has been fabricated in this work for amperometric analysis. Here, by fabricating the dimidiate microelectrode as the working electrode, while fitting a living electroactive bacterium (EAB) as the transducer, outward extracellular electron transfer (EET) of the sensory EAB is correlated with the concentration of lactic acid, which is electrochemically recorded and thus displays an electrical signal output for detection. In specific, the S. oneidensis modified dimidiate microelectrode (S.O.@GNE-NPE) acts as an integrated electroanalytical device to generate the electrical signal in situ. The established microcircuit provides unprecedented precision and sensitivity, contributing to subcellular amperometric measurement. The microbial sensor shows a linear response in the concentration range of 0-60 mM, with a limit of detection (LOD) at 0.3 mM. The microsensor also demonstrates good selectivity against interferences. Additionally, intracellular analysis of lactic acid provides direct evidence of enhanced lactic metabolism in cancer cells as a result of \"Warburg Effect\". This work shows an example of nano-, bio- and electric technologies that have been integrated on the EAB-modified dimidiate microelectrode, and achieves intracellular biosensing application through such integration. It may give a new strategy on the combination of micro/nanotechnologies with sensory EAB for the necessary development of bioelectronic devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用于脑机接口和管理神经系统疾病的可植入设备近年来经历了快速增长。虽然功能性植入物提供了显著的好处,与短暂性创伤和长期生物相容性和安全性相关的问题受到重大关注。已知由微植入物引起的脑组织中的急性炎症反应是一个问题,但仍未得到充分研究。这项研究提出了使用具有定义的表面等离子体共振(SPR)特性的钛氮氧化物(TiNO)纳米膜在机器人控制的微神经植入过程中对急性炎症反应进行即时表征。通过利用表面富集的氮氧化物,TiNO纳米膜可以通过硅烷化进行生物分子官能化。这种无标记的TiNO-SPR生物传感器对炎性细胞因子白介素6具有很高的灵敏度,检测限低至6.3fgml-1,检测时间短,为25分钟。此外,使用TiNO-SPR生物传感器对小鼠脑内微电极植入过程中的急性炎症反应进行术中监测.通过术中脑脊液采样和现场护理等离子体生物传感,由机器人控制的脑微电极植入引起的急性炎症反应的节律已被成功描述,提供对侵入性脑-机接口的术中安全评估的见解。
    Implantable devices for brain-machine interfaces and managing neurological disorders have experienced rapid growth in recent years. Although functional implants offer significant benefits, issues related to transient trauma and long-term biocompatibility and safety are of significant concern. Acute inflammatory reaction in the brain tissue caused by microimplants is known to be an issue but remains poorly studied. This study presents the use of titanium oxynitride (TiNO) nanofilm with defined surface plasmon resonance (SPR) properties for point-of-care characterizing of acute inflammatory responses during robot-controlled micro-neuro-implantation. By leveraging surface-enriched oxynitride, TiNO nanofilms can be biomolecular-functionalized through silanization. This label-free TiNO-SPR biosensor exhibits a high sensitivity toward the inflammatory cytokine interleukin-6 with a detection limit down to 6.3 fg ml-1 and a short assay time of 25 min. Additionally, intraoperative monitoring of acute inflammatory responses during microelectrode implantation in the mice brain has been accomplished using the TiNO-SPR biosensors. Through intraoperative cerebrospinal fluid sampling and point-of-care plasmonic biosensing, the rhythm of acute inflammatory responses induced by the robot-controlled brain microelectrodes implantation has been successfully depicted, offering insights into intraoperative safety assessment of invasive brain-machine interfaces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    温度对各种神经调节过程具有深远的影响,并已成为焦点。然而,尚未充分阐明急性环境温度波动对培养的皮质网络的影响。为了弥合这个差距,我们开发了一种芯片上大脑平台,集成了皮质网络和电沉积的Pt/Ir修饰的微电极阵列(MEAs)以及3D打印的熊形三室,促进温度瞬变的控制。这种创新的系统管理热刺激,同时监测神经元活动,包括尖峰和局部场势,来自60个微电极(直径:30μm;阻抗:9.34±1.37kΩ;相位延迟:-45.26±2.85°)。通过三腔室内的原位灌注,将约±10°C/s的温度转变应用于MEAs上的皮质网络。随后,我们在组水平(神经元群体)及其相互作用(网络动力学)和个体水平(细胞活动)检查了温度调节下芯片上大脑的时空动力学.具体来说,我们发现,在温度降低后,神经元通过同步发射来提高网络的整体信息传输效率,以补偿单细胞级信息传输效率的降低,与温度升高相反。通过利用高性能MEA与灌注室的集成,这项调查提供了一个全面的了解温度对神经网络的时空动力学的影响,从而促进未来探索温度和大脑功能之间复杂的相互作用。
    Temperature has a profound influence on various neuromodulation processes and has emerged as a focal point. However, the effects of acute environmental temperature fluctuations on cultured cortical networks have been inadequately elucidated. To bridge this gap, we have developed a brain-on-a-chip platform integrating cortical networks and electrodeposited Pt/Ir modified microelectrode arrays (MEAs) with 3D-printed bear-shaped triple chambers, facilitating control of temperature transients. This innovative system administers thermal stimuli while concurrently monitoring neuronal activity, including spikes and local field potentials, from 60 microelectrodes (diameter: 30 μm; impedance: 9.34 ± 1.37 kΩ; and phase delay: -45.26 ± 2.85°). Temperature transitions of approximately ±10 °C/s were applied to cortical networks on MEAs via in situ perfusion within the triple chambers. Subsequently, we examined the spatiotemporal dynamics of the brain-on-a-chip under temperature regulation at both the group level (neuronal population) and their interactions (network dynamics) and the individual level (cellular activity). Specifically, we found that after the temperature reduction neurons enhanced the overall information transmission efficiency of the network through synchronous firing to compensate for the decreased efficiency of single-cell level information transmission, in contrast to temperature elevation. By leveraging the integration of high-performance MEAs with perfusion chambers, this investigation provides a comprehensive understanding of the impact of temperature on the spatiotemporal dynamics of neural networks, thereby facilitating future exploration of the intricate interplay between temperature and brain function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多巴胺(DA),抗坏血酸(AA),尿酸(UA)是至关重要的神经化学物质,它们的异常水平与各种神经系统疾病有关。虽然已经开发了用于检测它们的电极,实现体内应用所需的灵敏度仍然是一个挑战。在这项研究中,我们提出了一种合成Au24Cd纳米酶(ACNE),显着增强金属电极的电化学性能。与银微电极相比,ACNE修饰的电极的阻抗显着降低了10倍。此外,我们使用五种电化学检测方法验证了它们优异的电催化活性和灵敏度,包括循环伏安法,差分脉冲伏安法,方波脉冲伏安法,正常脉冲伏安法,和线性扫描伏安法。重要的是,用ACNE修饰的金微电极(AuMEs)的稳定性得到了显着改善,与AuME相比,表现出30倍的增强。这种改进的性能表明ACNE功能化对于开发具有增强的灵敏度和稳定性的用于检测小分子的微生物传感器具有巨大的前景。
    Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are crucial neurochemicals, and their abnormal levels are involved in various neurological disorders. While electrodes for their detection have been developed, achieving the sensitivity required for in vivo applications remains a challenge. In this study, we proposed a synthetic Au24Cd nanoenzyme (ACNE) that significantly enhanced the electrochemical performance of metal electrodes. ACNE-modified electrodes demonstrated a remarkable 10-fold reduction in impedance compared to silver microelectrodes. Furthermore, we validated their excellent electrocatalytic activity and sensitivity using five electrochemical detection methods, including cyclic voltammetry, differential pulse voltammetry, square-wave pulse voltammetry, normal pulse voltammetry, and linear scanning voltammetry. Importantly, the stability of gold microelectrodes (Au MEs) modified with ACNEs was significantly improved, exhibiting a 30-fold enhancement compared to Au MEs. This improved performance suggests that ACNE functionalization holds great promise for developing micro-biosensors with enhanced sensitivity and stability for detecting small molecules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    提出了一种基于N掺杂激光直接石墨烯(N-LIG)/Au电极的无标记免疫传感器,用于H1N1流感病毒的检测。利用激光辐照的瞬时高温,通过滴落到LIG电极表面上的三聚氰胺的分解产生N原子,以获得具有较高电导率的N-LIG。N原子的掺杂为LIG微电极提供了大量的活性位点。结合AuNPs的电沉积,和共价交联抗体,一个简单的,构建了高灵敏稳定的免疫传感界面。拟议的H1N1流感病毒免疫传感器的检测范围为0.01fgmL-1至10ngmL-1,检测极限低至0.004fgmL-1。所构建的传感器具有超高的灵敏度和良好的选择性,可用于复杂的生物样品分析,在预防流感大规模传播方面具有潜在的应用前景。利用N-LIG电极的特性将为开发用于健康和环境应用的便携式电化学生物传感器提供机会。
    A label-free immunosensor based on an N-doped laser direct graphene (N-LIG)/Au electrode was proposed for H1N1 influenza virus detection. By utilizing the instantaneous high temperature of laser irradiation, N atoms are generated by the decomposition of melamine dripped onto the surface of an LIG electrode to obtain N-LIG with higher conductivity. The doping of N atoms provides a large number of active sites for LIG microelectrodes. Combined with the electrodeposition of Au NPs, and covalently crosslinking antibodies, a simple, highly sensitive and stable immunosensing interface is constructed. The proposed H1N1 influenza virus immunosensor has a detection range of 0.01 fg mL-1 to 10 ng mL-1 with a detection limit as low as 0.004 fg mL-1. The constructed sensor has ultra-high sensitivity and good selectivity and can be used for complex biological sample analysis, with potential application prospects in preventing the large-scale spread of influenza. Taking advantage of N-LIG electrode\'s properties will provide opportunities for developing portable electrochemical biosensors for health and environmental applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发了一种掺杂W的Pt修饰的氧化石墨烯(Pt-W-GO)电化学微电极,以亚细胞规模实时检测过氧化氢(H2O2)。有趣的是,结果表明,H2O2在HeLa细胞核中的浓度分别是细胞外膜和细胞质中的2.68倍和0.51倍,分别。
    A W-doped Pt modified graphene oxide (Pt-W-GO) electrochemical microelectrode was developed to detect hydrogen peroxide (H2O2) in real time at a subcellular scale. Interestingly, results showed that the concentration of H2O2 in the nucleus of HeLa cells was 2.68 times and 0.51 times that in the extracellular membrane and cytoplasm, respectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    伏隔核(NAc)和内囊前肢(ALIC)是使用深部脑刺激(DBS)治疗成瘾的有效靶标。然而,目前还没有关于人类单细胞水平上成瘾核的电生理特性的报道。本研究旨在探讨成瘾患者DBS手术期间使用微电极记录(MER)的NAc和ALIC中神经元的电活动特征,包括6名成瘾患者(5名海洛因成瘾和1名酒精成瘾)。通过合并FrameLink系统中的术前和术后图像,重建了微电极记录轨迹,并确定了不同深度的记录位点。结果表明,在256个神经元中,204(80%)为爆发神经元。NAc神经元占多数(57%),平均放电率(MFR)最高(1.94Hz)。ALIC神经元占最少(14%),MFR最低(0.44Hz)。MFR在进入NAc后增加,在离开ALIC后降低。在使用DBS治疗的成瘾患者中,发现不同细胞核的单细胞水平的电生理特征在手术轨迹上是不同的。
    The nucleus accumbens (NAc) and the anterior limb of internal capsule (ALIC) are effective targets for treating addiction using deep brain stimulation (DBS). However, there have been no reports on the electrophysiological characteristics of addiction nuclei at the single-cell level in humans. This study aimed to investigate the electrical activity characteristics of neurons in the NAc and ALIC using microelectrode recording (MER) during DBS surgery in patients with addiction, and six patients with addiction were included (five with heroin addiction and one with alcohol addiction). The microelectrode recording trajectories were reconstructed and recording sites at different depths were determined by merging the pre- and post-operative images in the FrameLink system. The results showed that among the 256 neurons, 204 (80 %) were burst neurons. NAc neurons accounted for the majority (57 %), and the mean firing rate (MFR) was the highest (1.94 Hz). ALIC neurons accounted for the least (14 %), and MFR was the lowest (0.44 Hz). MFR increased after entering the NAc and decreased after entering the ALIC. In the patients with addiction treated using DBS, the single-cell level electrophysiological characteristics of the different nuclei were found to be distinct along the surgical trajectory.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管体外神经元网络模型在推进神经科学研究方面具有巨大潜力,具有对神经元功能基础机制提供基本见解的能力,这种网络中的细胞通信动力学仍然知之甚少。这里,我们开发了一个可定制的,聚合物修饰的三维金微电极阵列具有足够的高信噪比稳定性,长期的,培养网络的神经元记录。通过使用细胞电刺激的定向空间和时间模式来探索基于突触的通信,我们在3周内监测了细胞网络动态,利用相关热图和互信息网络量化通信能力。分析细胞间的突触延迟和信号速度使我们能够建立通信连接模型。我们预计,我们对神经元网络中通信动态变化的发现将为未来的研究提供一个有价值的工具,以了解健康和疾病以及开发有效的平台来评估治疗。
    Although in vitro neuronal network models hold great potential for advancing neuroscience research, with the capacity to provide fundamental insights into mechanisms underlying neuronal functions, the dynamics of cell communication within such networks remain poorly understood. Here, we develop a customizable, polymer modified three-dimensional gold microelectrode array with sufficient stability for high signal-to-noise, long-term, neuronal recording of cultured networks. By using directed spatial and temporal patterns of electrical stimulation of cells to explore synaptic-based communication, we monitored cell network dynamics over 3 weeks, quantifying communication capability using correlation heatmaps and mutual information networks. Analysis of synaptic delay and signal speed between cells enabled us to establish a communication connectivity model. We anticipate that our discoveries of the dynamic changes in communication across the neuronal network will provide a valuable tool for future studies in understanding health and disease as well as in developing effective platforms for evaluating therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    开发实时,动态,具有高时空分辨率的原位分析方法对于探索大脑中的生化过程至关重要。尽管基于碳纤维(CF)微电极的体内电化学方法可有效监测生理和病理过程中的神经化学动力学,复杂的后修饰阻碍了大规模生产和广泛的神经科学应用。在这里,通过引入聚多巴胺锚定沸石咪唑酯骨架作为前体,我们制定了碳基材料原位工程的一般策略,以大规模生产功能性CFs。然后一步热解。这种策略展示了非凡的普遍性和设计灵活性,克服了复杂的改性后程序并避免了改性层的分层。这简化了功能性基于CF的微电极的制造和集成。此外,我们设计了高度稳定和选择性的H+,O2和抗坏血酸微传感器,并监测在生理和缺血再灌注病理过程中CO2暴露对脑组织O2含量的影响。
    Developing real-time, dynamic, and in situ analytical methods with high spatial and temporal resolutions is crucial for exploring biochemical processes in the brain. Although in vivo electrochemical methods based on carbon fiber (CF) microelectrodes are effective in monitoring neurochemical dynamics during physiological and pathological processes, complex post modification hinders large-scale productions and widespread neuroscience applications. Herein, we develop a general strategy for the in situ engineering of carbon-based materials to mass-produce functional CFs by introducing polydopamine to anchor zeolitic imidazolate frameworks as precursors, followed by one-step pyrolysis. This strategy demonstrates exceptional universality and design flexibility, overcoming complex post-modification procedures and avoiding the delamination of the modification layer. This simplifies the fabrication and integration of functional CF-based microelectrodes. Moreover, we design highly stable and selective H+, O2, and ascorbate microsensors and monitor the influence of CO2 exposure on the O2 content of the cerebral tissue during physiological and ischemia-reperfusion pathological processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号