关键词: MEG frequency tagging human language comprehension neuroscience parafoveal processing reading semantic processing

Mesh : Reading Humans Semantics Female Male Adult Young Adult Eye Movements / physiology Fovea Centralis / physiology Fixation, Ocular / physiology Magnetoencephalography Brain / physiology Comprehension / physiology

来  源:   DOI:10.7554/eLife.91327   PDF(Pubmed)

Abstract:
Humans can read and comprehend text rapidly, implying that readers might process multiple words per fixation. However, the extent to which parafoveal words are previewed and integrated into the evolving sentence context remains disputed. We investigated parafoveal processing during natural reading by recording brain activity and eye movements using MEG and an eye tracker while participants silently read one-line sentences. The sentences contained an unpredictable target word that was either congruent or incongruent with the sentence context. To measure parafoveal processing, we flickered the target words at 60 Hz and measured the resulting brain responses (i.e. Rapid Invisible Frequency Tagging, RIFT) during fixations on the pre-target words. Our results revealed a significantly weaker tagging response for target words that were incongruent with the previous context compared to congruent ones, even within 100ms of fixating the word immediately preceding the target. This reduction in the RIFT response was also found to be predictive of individual reading speed. We conclude that semantic information is not only extracted from the parafovea but can also be integrated with the previous context before the word is fixated. This early and extensive parafoveal processing supports the rapid word processing required for natural reading. Our study suggests that theoretical frameworks of natural reading should incorporate the concept of deep parafoveal processing.
摘要:
人类可以快速阅读和理解文本,暗示读者可能会处理每个固定的多个单词。然而,在何种程度上,半心词被预览和整合到不断发展的句子上下文仍然存在争议。我们通过使用MEG和眼动仪记录大脑活动和眼球运动,研究了自然阅读过程中的旁凹处理,而参与者则默默地阅读一行句子。句子包含一个不可预测的目标单词,该单词与句子上下文一致或不一致。为了测量半凹加工,我们以60Hz闪烁目标单词,并测量由此产生的大脑反应(即快速隐形频率标记,RIFT)在对预目标单词的注视期间。我们的结果表明,与相同的目标单词相比,与先前上下文不一致的目标单词的标记响应显着较弱,甚至在100ms内固定的单词紧前面的目标。还发现RIFT反应的这种降低可以预测个体的阅读速度。我们得出的结论是,语义信息不仅可以从parafovea中提取,而且可以在固定单词之前与先前的上下文集成。这种早期和广泛的半凹处理支持自然阅读所需的快速文字处理。我们的研究表明,自然阅读的理论框架应纳入深的副凹加工的概念。
公众号