Atomic defect engineering

  • 文章类型: Journal Article
    原子缺陷工程可以合理地修饰反应中间体的化学行为,以调节催化性能。在这里,我们在In(OH)3纳米带的表面上产生了氧空位,用于高效的尿素电合成。当在In(OH)3纳米带的表面上构建氧空位时,尿素的法拉第效率达到80.1%,比原始In(OH)3纳米带(20.7%)高2.9倍。在-0.8V对可逆氢电极,在具有丰富氧空位的(OH)3纳米带中,尿素的部分电流密度为-18.8mAcm-2。在最近的报道中,这样的值代表尿素电合成的最高活性。密度泛函理论计算表明,与氧缺陷相邻的不饱和In位点有助于优化关键中间体的吸附构型,促进C-N偶联和吸附的CO2NH2中间体的活化。原位光谱测量进一步验证了氧空位对尿素电合成的促进作用。
    The atomic defect engineering could feasibly decorate the chemical behaviors of reaction intermediates to regulate catalytic performance. Herein, we created oxygen vacancies on the surface of In(OH)3 nanobelts for efficient urea electrosynthesis. When the oxygen vacancies were constructed on the surface of the In(OH)3 nanobelts, the faradaic efficiency for urea reached 80.1%, which is 2.9 times higher than that (20.7%) of the pristine In(OH)3 nanobelts. At -0.8 V versus reversible hydrogen electrode, In(OH)3 nanobelts with abundant oxygen vacancies exhibited partial current density for urea of -18.8 mA cm-2. Such a value represents the highest activity for urea electrosynthesis among recent reports. Density functional theory calculations suggested that the unsaturated In sites adjacent to oxygen defects helped to optimize the adsorbed configurations of key intermediates, promoting both the C-N coupling and the activation of the adsorbed CO2NH2 intermediate. In-situ spectroscopy measurements further validated the promotional effect of the oxygen vacancies on urea electrosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    工程原子尺度缺陷已成为过渡金属二硫属(TMD)材料在下一代电子技术中未来应用的重要策略。因此,提供对电子缺陷相互作用的原子理解并支持缺陷工程开发以改善载流子传输对未来的TMD技术至关重要。在这项工作中,我们利用低温扫描隧道显微镜/光谱学(LT-STM/S)来引发不同类型的缺陷如何基于TMD中的谷间量子准粒子干涉(QPI)产生散射电位工程。此外,量化QPI驻波的能量相关相位变化揭示了取代引起的散射电势与载流子传输机制之间的详细电子缺陷相互作用。通过探索原子级缺陷的固有电子行为,进一步了解缺陷如何影响低维半导体中的载流子传输,我们提供可能有助于TMD未来扩展的潜在技术应用。
    Engineering atomic-scale defects has become an important strategy for the future application of transition metal dichalcogenide (TMD) materials in next-generation electronic technologies. Thus, providing an atomic understanding of the electron-defect interactions and supporting defect engineering development to improve carrier transport is crucial to future TMDs technologies. In this work, we utilize low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/S) to elicit how distinct types of defects bring forth scattering potential engineering based on intervalley quantum quasiparticle interference (QPI) in TMDs. Furthermore, quantifying the energy-dependent phase variation of the QPI standing wave reveals the detailed electron-defect interaction between the substitution-induced scattering potential and the carrier transport mechanism. By exploring the intrinsic electronic behavior of atomic-level defects to further understand how defects affect carrier transport in low-dimensional semiconductors, we offer potential technological applications that may contribute to the future expansion of TMDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号