vesicle fusion

囊泡融合
  • 文章类型: Journal Article
    植物细胞中的细胞分裂始于将细胞壁材料运输到细胞分裂平面中心的囊泡融合,其中细胞板形成并径向膨胀,直到与亲本细胞壁融合。囊泡融合由反式-SNARE复合物促进,在Sec1/Munc18(SM)蛋白的帮助下。细胞板膜融合需要SNARE蛋白KNOLLE和SM蛋白KEULE。由于KEULE的关键功能,迄今为止鉴定的所有拟南芥(拟南芥)keule突变体都是幼苗致死性的。这里,我们鉴定了拟南芥serrata4-1(sea4-1)和sea4-2突变体,带有隐性,KEULE的低态等位基因。纯合的sea4-1和sea4-2植物是可行且可育的,但与野生型相比,玫瑰花结更小,抽苔时的叶子更少。它们的叶子是锯齿状的,小,波浪形,具有复杂的脉络模式。突变叶也发展坏死斑块并经历过早衰老。RNA-seq显示转录组变化可能导致细胞壁完整性降低和未折叠蛋白质反应增加。这些发现揭示了KEULE在胚胎后发育中的作用,特别是在莲座叶和叶缘的图案中。
    Cytokinesis in plant cells begins with the fusion of vesicles that transport cell wall materials to the center of the cell division plane, where the cell plate forms and expands radially until it fuses with the parental cell wall. Vesicle fusion is facilitated by trans-SNARE complexes, with assistance from Sec1/Munc18 (SM) proteins. The SNARE protein KNOLLE and the SM protein KEULE are required for membrane fusion at the cell plate. Due to the crucial function of KEULE, all Arabidopsis (Arabidopsis thaliana) keule mutants identified to date are seedling lethal. Here, we identified the Arabidopsis serrata4-1 (sea4-1) and sea4-2 mutants, which carry recessive, hypomorphic alleles of KEULE. Homozygous sea4-1 and sea4-2 plants are viable and fertile but have smaller rosettes and fewer leaves at bolting than the wild type. Their leaves are serrated, small, and wavy, with a complex venation pattern. The mutant leaves also develop necrotic patches and undergo premature senescence. RNA-seq revealed transcriptome changes likely leading to reduced cell wall integrity and an increase in the unfolded protein response. These findings shed light on the roles of KEULE in postembryonic development, particularly in the patterning of rosette leaves and leaf margins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在Atg8蛋白的MAP1LC3/LC3亚家族中,LC3B和LC3C构成了研究最多和最少的成员,分别,LC3B通常被认为是自噬体标记和LC3亚家族的典型代表。在最近的几项研究中,LC3C已成为各种细胞稳态过程中的重要调节剂。我们自己的研究数据表明,LC3C比LC3B诱导更高水平的系链和囊泡间脂质混合。LC3C包含一个特殊的N端区域,与其他Atg8家族蛋白成员不同。使用一系列突变体,我们已经表明,LC3C的N端区域负责增强的囊泡连接,与LC3B相比,LC3C的膜扰动和囊泡-囊泡融合活性。缩写:ATG:自噬相关;GABARAP:γ-氨基丁酸受体相关蛋白;MAP1LC3/LC3:微管相关蛋白1轻链3;PC:磷脂酰胆碱;PE:磷脂酰乙醇胺;PEmal:马来酰亚胺化衍生物;PtdIns:磷脂酰肌醇。
    Among the MAP1LC3/LC3 subfamily of Atg8 proteins, LC3B and LC3C constitute the most and least studied members, respectively, LC3B being generally considered as an autophagosomal marker and a canonical representative of the LC3 subfamily. In several recent studies, LC3C has emerged as an important modulator in various processes of cell homeostasis. Our own research data demonstrate that LC3C induces higher levels of tethering and of intervesicular lipid mixing than LC3B. LC3C contains a peculiar N-terminal region, different from the other Atg8-family protein members. Using a series of mutants, we have shown that the N-terminal region of LC3C is responsible for the enhanced vesicle tethering, membrane perturbation and vesicle-vesicle fusion activities of LC3C as compared to LC3B.Abbreviations: ATG: autophagy related; GABARAP: gamma-aminobutyric acid receptor associated protein; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PC: phosphatidyl choline; PE: phosphatidylethanolamine; PEmal: maleimide-derivatized PE; PtdIns: phosphatidylinositol.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脂质是调节膜融合的关键因素。脂质不仅是形成膜的结构成分,而且是囊泡融合和神经递质释放的活性催化剂,由可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(SNARE)蛋白驱动。SNARE蛋白似乎在融合前部分组装,但是在Ca2流入之前阻止囊泡融合的机制仍然不清楚。这里,我们表明,磷脂酰肌醇4,5-二磷酸(PIP2)静电触发囊泡融合作为一种静电催化剂,通过降低水合能和肉豆蔻酰化的富含丙氨酸的C激酶底物(MARCKS),PIP2结合蛋白,在SNARE复合物部分组装的囊泡对接状态下阻止囊泡融合。囊泡模拟脂质体无法通过掩蔽PIP2来再现囊泡融合停滞,这表明天然囊泡对于生理囊泡融合的重建至关重要。PIP2吸引阳离子以排斥膜中的水分子,从而降低水合能量屏障。
    Lipids are key factors in regulating membrane fusion. Lipids are not only structural components to form membranes but also active catalysts for vesicle fusion and neurotransmitter release, which are driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE proteins seem to be partially assembled before fusion, but the mechanisms that arrest vesicle fusion before Ca2+ influx are still not clear. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) electrostatically triggers vesicle fusion as an electrostatic catalyst by lowering the hydration energy and that a myristoylated alanine-rich C-kinase substrate (MARCKS), a PIP2-binding protein, arrests vesicle fusion in a vesicle docking state where the SNARE complex is partially assembled. Vesicle-mimicking liposomes fail to reproduce vesicle fusion arrest by masking PIP2, indicating that native vesicles are essential for the reconstitution of physiological vesicle fusion. PIP2 attracts cations to repel water molecules from membranes, thus lowering the hydration energy barrier.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在神经元细胞类型中,囊泡胞吐作用由SNARE(可溶性NSF附着受体)复合物控制,该复合物由突触蛋白2,SNAP25和syntaxin1组成。这些蛋白质是囊泡引发和融合所必需的。我们生成了一个改进的基于SNAP25的SNARECOmplexReporter(SCORE2),其中包含mCeruelan3和Venus,并在SNAP25敲除的胚胎小鼠嗜铬细胞中过表达。该构建体挽救了囊泡融合,其具有与野生型细胞中的融合无法区分的性质。将使用电化学检测器阵列的单个释放事件的电化学成像与全内反射荧光共振能量转移(TIR-FRET)成像相结合,揭示了在单个融合事件之前65ms的FRET快速增加。实验是在对接的稳态循环条件下进行的,启动,和融合,延迟表明FRET的变化反映了囊泡的紧密对接和启动,然后在〜65ms后进行融合。考虑到不存在野生型SNAP25,SCORE2允许确定融合位点处的分子数量和改变构象的数量。在引发步骤中改变构象的SNAP25分子的数量随囊泡大小和质膜中SNAP25密度的增加而增加,并等于囊泡-质膜接触区中存在的拷贝数。我们估计在wt细胞中,6至7个拷贝的SNAP25在引发步骤期间改变构象。
    In neuronal cell types, vesicular exocytosis is governed by the SNARE (soluble NSF attachment receptor) complex consisting of synaptobrevin2, SNAP25, and syntaxin1. These proteins are required for vesicle priming and fusion. We generated an improved SNAP25-based SNARE COmplex Reporter (SCORE2) incorporating mCeruelan3 and Venus and overexpressed it in SNAP25 knockout embryonic mouse chromaffin cells. This construct rescues vesicle fusion with properties indistinguishable from fusion in wild-type cells. Combining electrochemical imaging of individual release events using electrochemical detector arrays with total internal reflection fluorescence resonance energy transfer (TIR-FRET) imaging reveals a rapid FRET increase preceding individual fusion events by 65 ms. The experiments are performed under conditions of a steady-state cycle of docking, priming, and fusion, and the delay suggests that the FRET change reflects tight docking and priming of the vesicle, followed by fusion after ~65 ms. Given the absence of wt SNAP25, SCORE2 allows determination of the number of molecules at fusion sites and the number that changes conformation. The number of SNAP25 molecules changing conformation in the priming step increases with vesicle size and SNAP25 density in the plasma membrane and equals the number of copies present in the vesicle-plasma membrane contact zone. We estimate that in wt cells, 6 to 7 copies of SNAP25 change conformation during the priming step.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    杂化脂质双层(HLBs)是粗糙的仿生细胞膜界面,其可以在无机表面上形成并且被设计成包含生物学上重要的组分如胆固醇。总的来说,HLBs是通过将磷脂沉积在由单尾两亲物组成的疏水自组装单层(SAM)的顶部而形成的,而最近的发现已经表明双尾两亲物如反磷酸胆碱(CP)脂质可以具有促进两性离子HLB形成的有利性质。在这里,我们探索了用溶剂交换和囊泡融合方法在CPSAM功能化的TiO2表面上制造富含胆固醇的HLBs的可行性。通过石英晶体微平衡耗散(QCM-D)测量来跟踪HLB制造过程的所有阶段,并根据所选方法揭示了制造结果的重要差异。用溶剂交换法,通过甲基-β-环糊精(MβCD)提取试验证实,可以在上部小叶中制造出胆固醇含量控制良好的HLBs,最高可达65mol%。与此形成鲜明对比的是,囊泡融合方法仅在从含有高达35摩尔%胆固醇的前体囊泡形成HLBs时有效,但这种性能仍然优于过去的亲水性SiO2的结果。我们讨论了两种方法不同效率的影响因素,以及双尾CPSAM作为将胆固醇掺入HLB中的有利界面的普遍实用性。因此,我们的发现支持溶剂交换方法是在CPSAM功能化的TiO2表面上制造富含胆固醇的HLBs的通用工具。
    Hybrid lipid bilayers (HLBs) are rugged biomimetic cell membrane interfaces that can form on inorganic surfaces and be designed to contain biologically important components like cholesterol. In general, HLBs are formed by depositing phospholipids on top of a hydrophobic self-assembled monolayer (SAM) composed of one-tail amphiphiles, while recent findings have shown that two-tail amphiphiles such as inverse phosphocholine (CP) lipids can have advantageous properties to promote zwitterionic HLB formation. Herein, we explored the feasibility of fabricating cholesterol-enriched HLBs on CP SAM-functionalized TiO2 surfaces with the solvent exchange and vesicle fusion methods. All stages of the HLB fabrication process were tracked by quartz crystal microbalance-dissipation (QCM-D) measurements and revealed important differences in fabrication outcome depending on the chosen method. With the solvent exchange method, it was possible to fabricate HLBs with well-controlled cholesterol fractions up to ~65 mol% in the upper leaflet as confirmed by a methyl-β-cyclodextrin (MβCD) extraction assay. In marked contrast, the vesicle fusion method was only effective at forming HLBs from precursor vesicles containing up to ~35 mol% cholesterol, but this performance was still superior to past results on hydrophilic SiO2. We discuss the contributing factors to the different efficiencies of the two methods as well as the general utility of two-tail CP SAMs as favorable interfaces to incorporate cholesterol into HLBs. Accordingly, our findings support that the solvent exchange method is a versatile tool to fabricate cholesterol-enriched HLBs on CP SAM-functionalized TiO2 surfaces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人血脑屏障(BBB)包含单层脑微血管内皮细胞(HBMEC),其保护脑免受血源性病原体的侵害。脑膜炎是最严重的疾病之一,但是引起脑膜炎的主要细菌病原体穿过BBB到达大脑的机制仍然知之甚少。我们发现肺炎链球菌,B组链球菌,和新生儿脑膜炎大肠杆菌通常利用独特的囊泡融合机制搭便车转铁蛋白受体(TfR)胞吞穿过BBB,并在体外人BBB模型和小鼠模型中说明了这一过程的细节。从含细菌的囊泡(BCV)发出的Toll样受体信号在先天免疫调节因子TRAF3的Lys168和Lys181触发K33连接的聚泛素化,然后激活包含鸟嘌呤核苷酸交换因子RCC2的蛋白质复合物的形成。BCV上的小GTP酶RalA和外囊亚复合物I(SCI)。SEC6在SCI中的独特功能,与BCV上的RalA和TfR囊泡上的SNARE蛋白SNAP23直接相互作用,束缚这两个囊泡并启动融合。我们的结果表明,先天免疫触发TRAF3的独特修饰和BCV上HBMEC特异性蛋白复合物的形成,以验证TfR囊泡的精确识别和选择,以与BBB融合并促进细菌渗透。
    The human blood-brain barrier (BBB) comprises a single layer of brain microvascular endothelial cells (HBMECs) protecting the brain from bloodborne pathogens. Meningitis is among the most serious diseases, but the mechanisms by which major meningitis-causing bacterial pathogens cross the BBB to reach the brain remain poorly understood. We found that Streptococcus pneumoniae, group B Streptococcus, and neonatal meningitis Escherichia coli commonly exploit a unique vesicle fusion mechanism to hitchhike on transferrin receptor (TfR) transcytosis to cross the BBB and illustrated the details of this process in human BBB model in vitro and mouse model. Toll-like receptor signals emanating from bacteria-containing vesicles (BCVs) trigger K33-linked polyubiquitination at Lys168 and Lys181 of the innate immune regulator TRAF3 and then activate the formation of a protein complex containing the guanine nucleotide exchange factor RCC2, the small GTPase RalA and exocyst subcomplex I (SC I) on BCVs. The distinct function of SEC6 in SC I, interacting directly with RalA on BCVs and the SNARE protein SNAP23 on TfR vesicles, tethers these two vesicles and initiates the fusion. Our results reveal that innate immunity triggers a unique modification of TRAF3 and the formation of the HBMEC-specific protein complex on BCVs to authenticate the precise recognition and selection of TfR vesicles to fuse with and facilitate bacterial penetration of the BBB.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    分泌的最后一步是由位于相对膜中的SNARE蛋白促进的膜融合。在一个R和三个Q盘绕-盘绕的SNARE结构域之间形成反式-SNARE复合物驱动膜的最终途径,从而提供用于融合的机械能。该机制的生物学控制由一些SNARE内的额外结构域施加。例如,R-SNAREs的N末端Longin结构域(LD)(也称为囊泡相关膜蛋白,VAMP)可以折回SNARE域,阻断与其他同源SNARE的相互作用。LD还可以通过与其他运输相关蛋白的相互作用来确定亚细胞定位。这里,我们提供了细胞生物学和遗传学证据,证明Tyrosine57残基的磷酸化调节VAMP721的功能.我们发现天冬氨酸突变模拟磷酸化,导致蛋白质不稳定并随后在裂解液泡中降解。尽管突变体SNARE在分泌途径中具有类似野生型的定位以及与同源SNARE伴侣相互作用的能力,但突变体SNARE也未能挽救vamp721vamp722功能丧失系的缺陷。最重要的是,它强加了干扰根生长的显性阴性表型,野生型植物的正常分泌和胞质分裂产生主要含有分泌性囊泡的大聚集体。与磷酸化调节SNARE功能的天然VAMP721相比,非磷酸化VAMP721Y57F需要更高的基因剂量来挽救双突变体。我们提出了一个模型,其中Y57的短寿命磷酸化作为控制VAMP721活性的调节步骤,支持其开放状态和与同源伴侣的相互作用,以最终驱动膜融合。
    The final step in secretion is membrane fusion facilitated by SNARE proteins that reside in opposite membranes. The formation of a trans-SNARE complex between one R and three Q coiled-coiled SNARE domains drives the final approach of the membranes providing the mechanical energy for fusion. Biological control of this mechanism is exerted by additional domains within some SNAREs. For example, the N-terminal Longin domain (LD) of R-SNAREs (also called Vesicle-associated membrane proteins, VAMPs) can fold back onto the SNARE domain blocking interaction with other cognate SNAREs. The LD may also determine the subcellular localization via interaction with other trafficking-related proteins. Here, we provide cell-biological and genetic evidence that phosphorylation of the Tyrosine57 residue regulates the functionality of VAMP721. We found that an aspartate mutation mimics phosphorylation, leading to protein instability and subsequent degradation in lytic vacuoles. The mutant SNARE also fails to rescue the defects of vamp721vamp722 loss-of-function lines in spite of its wildtype-like localization within the secretory pathway and the ability to interact with cognate SNARE partners. Most importantly, it imposes a dominant negative phenotype interfering with root growth, normal secretion and cytokinesis in wildtype plants generating large aggregates that mainly contain secretory vesicles. Non-phosphorylatable VAMP721Y57F needs higher gene dosage to rescue double mutants in comparison to native VAMP721 underpinning that phosphorylation modulates SNARE function. We propose a model where short-lived phosphorylation of Y57 serves as a regulatory step to control VAMP721 activity, favoring its open state and interaction with cognate partners to ultimately drive membrane fusion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钙(Ca2+)在触发所有三种主要神经递质释放模式(同步,异步,和自发)。Synaptotagmin1,具有两个C2结构域的蛋白质,是突触结合蛋白家族的第一个同工型,已被鉴定并证明是用于同步神经递质释放的主要Ca2传感器。发现突触蛋白家族的其他同工型以及其他C2蛋白,例如双C2结构域蛋白家族,可充当不同神经递质释放模式的Ca2传感器。最近的重大进展和以前的数据表明了一种新的模式,释放抑制,用于启动Ca2+触发的同步神经递质释放。Synaptotagmin1通过其两个C2结构域结合Ca2并缓解引发的融合前机制。在Ca2+触发之前,synaptotagmin1与部分拉链SNARE复合物独立地相互作用Ca2+,质膜,磷脂,和其他组件,以形成准备快速释放的预融合状态。然而,膜融合被抑制,直到Ca2+的到达重新定向C2域的Ca2+结合环扰乱脂质双层,帮助桥接膜,和/或诱导膜弯曲,作为动力冲程来激活融合。本章回顾了支持这些模型的证据,并讨论了可能构成这些能力的分子相互作用。
    Calcium (Ca2+) plays a critical role in triggering all three primary modes of neurotransmitter release (synchronous, asynchronous, and spontaneous). Synaptotagmin1, a protein with two C2 domains, is the first isoform of the synaptotagmin family that was identified and demonstrated as the primary Ca2+ sensor for synchronous neurotransmitter release. Other isoforms of the synaptotagmin family as well as other C2 proteins such as the double C2 domain protein family were found to act as Ca2+ sensors for different modes of neurotransmitter release. Major recent advances and previous data suggest a new model, release-of-inhibition, for the initiation of Ca2+-triggered synchronous neurotransmitter release. Synaptotagmin1 binds Ca2+ via its two C2 domains and relieves a primed pre-fusion machinery. Before Ca2+ triggering, synaptotagmin1 interacts Ca2+ independently with partially zippered SNARE complexes, the plasma membrane, phospholipids, and other components to form a primed pre-fusion state that is ready for fast release. However, membrane fusion is inhibited until the arrival of Ca2+ reorients the Ca2+-binding loops of the C2 domain to perturb the lipid bilayers, help bridge the membranes, and/or induce membrane curvatures, which serves as a power stroke to activate fusion. This chapter reviews the evidence supporting these models and discusses the molecular interactions that may underlie these abilities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    当囊泡与质膜融合时,囊泡中的神经递质通过融合孔释放。随后回收融合的囊泡膜是回收胞外囊泡的关键步骤。将先进的电生理技术应用于大型神经末梢,Held的花萼,导致内吞的记录,个体囊泡融合和取回,以及聚变孔开放过程和裂变孔闭合过程的动力学。这些研究揭示了三种动力学上不同形式的内吞作用-快速,慢,和散装-和两种形式的融合-完全崩溃和亲吻和奔跑。钙内流通过激活钙调蛋白/钙调磷酸酶信号通路和蛋白激酶C触发所有动力学上可区分的胞吞形式。这可能去磷酸化和磷酸化内吞蛋白。聚合肌动蛋白可以提供机械力来弯曲膜,形成膜坑,产生囊泡的前体。本章对这些研究进展进行了综述。
    Neurotransmitter in vesicles is released through a fusion pore when vesicles fuse with the plasma membrane. Subsequent retrieval of the fused vesicle membrane is the key step in recycling exocytosed vesicles. Application of advanced electrophysiological techniques to a large nerve terminal, the calyx of Held, has led to recordings of endocytosis, individual vesicle fusion and retrieval, and the kinetics of the fusion pore opening process and the fission pore closure process. These studies have revealed three kinetically different forms of endocytosis-rapid, slow, and bulk-and two forms of fusion-full collapse and kiss-and-run. Calcium influx triggers all kinetically distinguishable forms of endocytosis at calyces by activation of calmodulin/calcineurin signaling pathway and protein kinase C, which may dephosphorylate and phosphorylate endocytic proteins. Polymerized actin may provide mechanical forces to bend the membrane, forming membrane pits, the precursor for generating vesicles. These research advancements are reviewed in this chapter.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    真菌是一类重要的微生物,在各种生态和生物技术过程中起着至关重要的作用。真菌依赖于细胞内蛋白质运输,这涉及将蛋白质从其合成位点转移到细胞内外的最终目的地。可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(SNARE)蛋白是囊泡运输和膜融合的重要组成部分,最终导致货物释放到目标目的地。v-SNARE(囊泡相关的SNARE)Snc1负责质膜(PM)和高尔基体之间的顺行和逆行囊泡运输。它允许胞外囊泡与PM融合,并随后通过三种不同且平行的再循环途径将高尔基体定位的蛋白质再循环回高尔基体。这个回收过程需要几个组件,包括磷脂翻转酶(Drs2-Cdc50),一种F盒蛋白(Rcy1),排序Nexin(Snx4-Atg20),回溯提交,和COPI外套综合体。Snc1与胞吐SNARE(Sso1/2,Sec9)和胞吐复合物相互作用,完成胞吐过程。它还在内吞运输期间与内吞SNARE(Tlg1和Tlg2)相互作用。Snc1已在真菌中进行了广泛的研究,并已发现在细胞内蛋白质运输的各个方面发挥关键作用。当Snc1单独或与一些关键的分泌成分组合过表达时,它导致蛋白质产量增加。本文将介绍Snc1在真菌的顺行和逆行运输中的作用及其与其他蛋白质的相互作用,以实现有效的细胞运输。
    Fungi are an important group of microorganisms that play crucial roles in a variety of ecological and biotechnological processes. Fungi depend on intracellular protein trafficking, which involves moving proteins from their site of synthesis to the final destination within or outside the cell. The soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are vital components of vesicle trafficking and membrane fusion, ultimately leading to the release of cargos to the target destination. The v-SNARE (vesicle-associated SNARE) Snc1 is responsible for anterograde and retrograde vesicle trafficking between the plasma membrane (PM) and Golgi. It allows for the fusion of exocytic vesicles to the PM and the subsequent recycling of Golgi-localized proteins back to the Golgi via three distinct and parallel recycling pathways. This recycling process requires several components, including a phospholipid flippase (Drs2-Cdc50), an F-box protein (Rcy1), a sorting nexin (Snx4-Atg20), a retromer submit, and the COPI coat complex. Snc1 interacts with exocytic SNAREs (Sso1/2, Sec9) and the exocytic complex to complete the process of exocytosis. It also interacts with endocytic SNAREs (Tlg1 and Tlg2) during endocytic trafficking. Snc1 has been extensively investigated in fungi and has been found to play crucial roles in various aspects of intracellular protein trafficking. When Snc1 is overexpressed alone or in combination with some key secretory components, it results in enhanced protein production. This article will cover the role of Snc1 in the anterograde and retrograde trafficking of fungi and its interactions with other proteins for efficient cellular transportation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号