vesicle fusion

囊泡融合
  • 文章类型: Journal Article
    人血脑屏障(BBB)包含单层脑微血管内皮细胞(HBMEC),其保护脑免受血源性病原体的侵害。脑膜炎是最严重的疾病之一,但是引起脑膜炎的主要细菌病原体穿过BBB到达大脑的机制仍然知之甚少。我们发现肺炎链球菌,B组链球菌,和新生儿脑膜炎大肠杆菌通常利用独特的囊泡融合机制搭便车转铁蛋白受体(TfR)胞吞穿过BBB,并在体外人BBB模型和小鼠模型中说明了这一过程的细节。从含细菌的囊泡(BCV)发出的Toll样受体信号在先天免疫调节因子TRAF3的Lys168和Lys181触发K33连接的聚泛素化,然后激活包含鸟嘌呤核苷酸交换因子RCC2的蛋白质复合物的形成。BCV上的小GTP酶RalA和外囊亚复合物I(SCI)。SEC6在SCI中的独特功能,与BCV上的RalA和TfR囊泡上的SNARE蛋白SNAP23直接相互作用,束缚这两个囊泡并启动融合。我们的结果表明,先天免疫触发TRAF3的独特修饰和BCV上HBMEC特异性蛋白复合物的形成,以验证TfR囊泡的精确识别和选择,以与BBB融合并促进细菌渗透。
    The human blood-brain barrier (BBB) comprises a single layer of brain microvascular endothelial cells (HBMECs) protecting the brain from bloodborne pathogens. Meningitis is among the most serious diseases, but the mechanisms by which major meningitis-causing bacterial pathogens cross the BBB to reach the brain remain poorly understood. We found that Streptococcus pneumoniae, group B Streptococcus, and neonatal meningitis Escherichia coli commonly exploit a unique vesicle fusion mechanism to hitchhike on transferrin receptor (TfR) transcytosis to cross the BBB and illustrated the details of this process in human BBB model in vitro and mouse model. Toll-like receptor signals emanating from bacteria-containing vesicles (BCVs) trigger K33-linked polyubiquitination at Lys168 and Lys181 of the innate immune regulator TRAF3 and then activate the formation of a protein complex containing the guanine nucleotide exchange factor RCC2, the small GTPase RalA and exocyst subcomplex I (SC I) on BCVs. The distinct function of SEC6 in SC I, interacting directly with RalA on BCVs and the SNARE protein SNAP23 on TfR vesicles, tethers these two vesicles and initiates the fusion. Our results reveal that innate immunity triggers a unique modification of TRAF3 and the formation of the HBMEC-specific protein complex on BCVs to authenticate the precise recognition and selection of TfR vesicles to fuse with and facilitate bacterial penetration of the BBB.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    真菌是一类重要的微生物,在各种生态和生物技术过程中起着至关重要的作用。真菌依赖于细胞内蛋白质运输,这涉及将蛋白质从其合成位点转移到细胞内外的最终目的地。可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(SNARE)蛋白是囊泡运输和膜融合的重要组成部分,最终导致货物释放到目标目的地。v-SNARE(囊泡相关的SNARE)Snc1负责质膜(PM)和高尔基体之间的顺行和逆行囊泡运输。它允许胞外囊泡与PM融合,并随后通过三种不同且平行的再循环途径将高尔基体定位的蛋白质再循环回高尔基体。这个回收过程需要几个组件,包括磷脂翻转酶(Drs2-Cdc50),一种F盒蛋白(Rcy1),排序Nexin(Snx4-Atg20),回溯提交,和COPI外套综合体。Snc1与胞吐SNARE(Sso1/2,Sec9)和胞吐复合物相互作用,完成胞吐过程。它还在内吞运输期间与内吞SNARE(Tlg1和Tlg2)相互作用。Snc1已在真菌中进行了广泛的研究,并已发现在细胞内蛋白质运输的各个方面发挥关键作用。当Snc1单独或与一些关键的分泌成分组合过表达时,它导致蛋白质产量增加。本文将介绍Snc1在真菌的顺行和逆行运输中的作用及其与其他蛋白质的相互作用,以实现有效的细胞运输。
    Fungi are an important group of microorganisms that play crucial roles in a variety of ecological and biotechnological processes. Fungi depend on intracellular protein trafficking, which involves moving proteins from their site of synthesis to the final destination within or outside the cell. The soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are vital components of vesicle trafficking and membrane fusion, ultimately leading to the release of cargos to the target destination. The v-SNARE (vesicle-associated SNARE) Snc1 is responsible for anterograde and retrograde vesicle trafficking between the plasma membrane (PM) and Golgi. It allows for the fusion of exocytic vesicles to the PM and the subsequent recycling of Golgi-localized proteins back to the Golgi via three distinct and parallel recycling pathways. This recycling process requires several components, including a phospholipid flippase (Drs2-Cdc50), an F-box protein (Rcy1), a sorting nexin (Snx4-Atg20), a retromer submit, and the COPI coat complex. Snc1 interacts with exocytic SNAREs (Sso1/2, Sec9) and the exocytic complex to complete the process of exocytosis. It also interacts with endocytic SNAREs (Tlg1 and Tlg2) during endocytic trafficking. Snc1 has been extensively investigated in fungi and has been found to play crucial roles in various aspects of intracellular protein trafficking. When Snc1 is overexpressed alone or in combination with some key secretory components, it results in enhanced protein production. This article will cover the role of Snc1 in the anterograde and retrograde trafficking of fungi and its interactions with other proteins for efficient cellular transportation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人造细胞是基于动态分隔系统。因此,膜结合系统的重塑,如巨大的单层囊泡,正在寻找超越生物学研究的应用,设计细胞模拟结构。随着人造细胞在合成生物学中的突出地位,巨大的单层囊泡融合正迅速成为必不可少的实验步骤。已经开发了几种技术来完成这一步骤,具有不同的效率和选择性。迄今为止,囊泡融合的表征依赖于巨大囊泡的小样本,手动检查或通过荧光测定法检查小型和大型单层囊泡的悬浮液。现在,融合产物的检测和表征的自动化对于这些融合方案的筛选和优化是必要的。为此,我们基于荧光团在膜上和囊泡腔中的共定位实施了融合测定。通过图像分割以最少的用户输入在单个隔室中评估荧光共定位,允许将该技术应用于高通量筛选。检测后,可以总结和可视化囊泡荧光和形态特性的统计信息,通过不同荧光通道的相关系数评估每个对象的脂质和含量转移。使用这个工具,我们报告并描述了氯化钠对磷脂酰胆碱巨囊泡的意外融合活性。孵育20小时后,可以检测到大多数囊泡中的脂质转移,而含量交换仅在约8%的囊泡中发生额外的刺激。
    Artificial cells are based on dynamic compartmentalized systems. Thus, remodeling of membrane-bound systems, such as giant unilamellar vesicles, is finding applications beyond biological studies, to engineer cell-mimicking structures. Giant unilamellar vesicle fusion is rapidly becoming an essential experimental step as artificial cells gain prominence in synthetic biology. Several techniques have been developed to accomplish this step, with varying efficiency and selectivity. To date, characterization of vesicle fusion has relied on small samples of giant vesicles, examined either manually or by fluorometric assays on suspensions of small and large unilamellar vesicles. Automation of the detection and characterization of fusion products is now necessary for the screening and optimization of these fusion protocols. To this end, we implemented a fusion assay based on fluorophore colocalization on the membranes and in the lumen of vesicles. Fluorescence colocalization was evaluated within single compartments by image segmentation with minimal user input, allowing the application of the technique to high-throughput screenings. After detection, statistical information on vesicle fluorescence and morphological properties can be summarized and visualized, assessing lipid and content transfer for each object by the correlation coefficient of different fluorescence channels. Using this tool, we report and characterize the unexpected fusogenic activity of sodium chloride on phosphatidylcholine giant vesicles. Lipid transfer in most of the vesicles could be detected after 20 h of incubation, while content exchange only occurred with additional stimuli in around 8% of vesicles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    秀丽隐杆线虫的一些最明显的老化表型与卵黄蛋白原(Vtg)的生殖后产生有关,其在加工和脂质负载后形成卵黄蛋白(YP)复合物。Vtg/YP水平随着年龄的增长而大幅增加,抑制这种情况会延长寿命,但是这些蛋白质的亚细胞和生物体分布如何随着年龄的增长而变化尚未得到系统的研究。这里,这样做是为了了解卵黄发生是如何促进衰老的。肠道卵黄原蛋白囊泡(VVs)的年龄相关变化,假卵黄斑块(PYPs),和性腺卵黄细胞器(YOS)已通过免疫电子显微镜进行了表征。我们发现,从生殖成人第2天(AD2)到生殖后AD6和AD9,肠VV的直径从0.2扩大到3-4μm或体积>3000倍,PYP浓度和体积增加>3倍,而卵母细胞中的YOs直径从0.5至0.4μm或体积收缩49%。在公元6年和公元9年的蠕虫中,在皮下组织中发现错误定位的YOs,子宫细胞,在前两个组织中,体细胞性腺鞘的大小可以达到10μm。繁殖后蠕虫中VV的显着大小增加和YO的位置错误,伴随着体细胞中这些含Vtg/YP的囊泡结构之间的广泛融合。相比之下,卵母细胞中YOs之间未见融合。我们建议除了继续生产Vtg之外,在体中VV和错域YOs之间的过度融合会使秀丽隐杆线虫中的衰老病理恶化。
    Some of the most conspicuous aging phenotypes of C. elegans are related to post-reproductive production of vitellogenins (Vtg), which form yolk protein (YP) complexes after processing and lipid loading. Vtg/YP levels show huge increases with age, and inhibition of this extends lifespan, but how subcellular and organism-wide distribution of these proteins changes with age has not been systematically explored. Here, this has been done to understand how vitellogenesis promotes aging. The age-associated changes of intestinal vitellogenin vesicles (VVs), pseudocoelomic yolk patches (PYPs), and gonadal yolk organelles (YOs) have been characterized by immuno-electron microscopy. We find that from reproductive adult day 2 (AD 2) to post-reproductive AD 6 and AD 9, intestinal VVs expand from 0.2 to 3-4 μm in diameter or by >3000 times in volume, PYPs increase by >3 times in YP concentration and volume, while YOs in oocytes shrink slightly from 0.5 to 0.4 μm in diameter or by 49% in volume. In AD 6 and AD 9 worms, mislocalized YOs found in the hypodermis, uterine cells, and the somatic gonadal sheath can reach a size of 10 μm across in the former two tissues. This remarkable size increase of VVs and that of mislocalized YOs in post-reproductive worms are accompanied by extensive fusion between these Vtg/YP-containing vesicular structures in somatic cells. In contrast, no fusion is seen between YOs in oocytes. We propose that in addition to the continued production of Vtg, excessive fusion between VVs and mislocalized YOs in the soma worsen the aging pathologies seen in C. elegans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Ca2+触发的神经递质释放涉及复杂的调节机制,包括一系列蛋白质-蛋白质相互作用。三种蛋白质,突触短蛋白(VAMP),25kDa的突触体相关蛋白(SNAP-25)和突触体蛋白,构成可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(SNARE)核心复合物,在控制囊泡融合和胞吐中起关键作用。许多其他蛋白质通过与SNARE复合物的直接和/或间接相互作用参与过程的调节。虽然已经做了很多努力,胞吐作用的调节机制尚不完全清楚。越来越多的证据表明,小GTP酶Rab3和突触蛋白在囊泡融合和神经递质释放过程中起着重要的调节作用。这篇综述概述了我们目前对这两种调节蛋白的理解,重点研究了Rab3与突触结合蛋白在调控过程中的相互作用。
    Ca2+-triggered neurotransmitter release involves complex regulatory mechanisms, including a series of protein-protein interactions. Three proteins, synaptobrevin (VAMP), synaptosomal-associated protein of 25kDa (SNAP-25) and syntaxin, constitute the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complex that plays key roles in controlling vesicle fusion and exocytosis. Many other proteins participate in the regulation of the processes via direct and/or indirect interaction with the SNARE complex. Although much effort has been made, the regulatory mechanism for exocytosis is still not completely clear. Accumulated evidence indicates that the small GTPase Rab3 and synaptotagmin proteins play important regulatory roles during vesicle fusion and neurotransmitter release. This review outlines our present understanding of the two regulatory proteins, with the focus on the interaction of Rab3 with synaptotagmin in the regulatory process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞内囊泡运输是维持真核细胞中膜封闭细胞器稳态的基本过程。这些细胞器通过含有囊泡的货物将货物从供体膜运输到目标膜。囊泡运输途径包括从供体膜形成囊泡,囊泡运输,囊泡与靶膜融合。外壳蛋白介导的囊泡形成是一个微妙的膜出芽过程,用于货物分子的选择和包装到囊泡载体中。囊泡运输是含有囊泡的货物从供体膜转运到目标膜的动态和特定过程。这个过程需要一组保守的蛋白质,如RabGTPases,电机适配器,和马达蛋白,以确保囊泡沿细胞骨架轨道运输。可溶性N-乙基-马来酰亚胺敏感因子(NSF)附着蛋白受体(SNARE)介导的囊泡融合是囊泡在靶膜上卸载货物分子的最终过程。为了确保在真核细胞中在定义的位置和时间模式下发生囊泡融合,多种融合蛋白,如突触蛋白(Syt),络合素(Cpx),Munc13、Munc18和其他系留因素,合作精确调节囊泡融合的过程。SNARE介导的囊泡融合中融合蛋白的功能障碍与许多疾病密切相关。最近的研究表明,刺激的膜融合可以通过破坏SNARE复合物和Ca2传感器蛋白之间的界面来进行药理学操作。这里,我们总结了最近对囊泡运输的分子机制的见解,以及基于囊泡融合操作的新疗法的开发意义。
    Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    囊泡融合对神经元末端的神经元通讯至关重要。用于神经递质释放的精致但复杂的融合机制受到蛋白质/神经递质-膜相互作用的严格控制和调节。计算\'显微镜\',特别是分子动力学模拟和相关技术,在过去的几十年中,对生理过程提供了显着的见解,并在神经学等领域做出了巨大贡献,药理学和病理生理学。在这里,我们回顾了与突触前囊泡-膜融合和神经递质释放相关的蛋白质/神经递质-膜相互作用的计算进展。并概述了未来在理解这一重要生理过程方面的挑战。
    Vesicle fusion is of crucial importance to neuronal communication at neuron terminals. The exquisite but complex fusion machinery for neurotransmitter release is tightly controlled and regulated by protein/neurotransmitter-membrane interactions. Computational \'microscopies\', in particular molecular dynamics simulations and related techniques, have provided notable insight into the physiological process over the past decades, and have made enormous contributions to fields such as neurology, pharmacology and pathophysiology. Here we review the computational advances of protein/neurotransmitter-membrane interactions related to presynaptic vesicle-membrane fusion and neurotransmitter release, and outline the in silico challenges ahead for understanding this important physiological process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    全内反射荧光显微镜(TIRFM)提供了极薄的光学切片,具有出色的信噪比,它允许以极好的时空分辨率可视化细胞表面的膜动力学。在这一章中,TIRFM用于记录和分析3T3-L1脂肪细胞中含有单个葡萄糖转运蛋白4(GLUT4)的囊泡的胞吐作用。
    Total internal reflection fluorescence microscopy (TIRFM) provides extremely thin optical sectioning with excellent signal-to-noise ratios, which allows for visualization of membrane dynamics at the cell surface with superb spatiotemporal resolution. In this chapter, TIRFM is used to record and analyze exocytosis of single glucose transporter-4 (GLUT4) containing vesicles in 3T3-L1 adipocytes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    GLUT4囊泡融合由可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(SNARE)和多种调节蛋白介导。例如,synip和tomosyn负调节GLUT4SNARE介导的膜融合。在这里,我们描述了体外重建试验,以确定SNARE的分子机制,synip,还有Tomosyn.这些方法也可以扩展到其他类型的膜融合事件的研究。
    The GLUT4 vesicle fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and a variety of regulatory proteins. For example, synip and tomosyn negatively regulate GLUT4 SNARE-mediated membrane fusion. Here we describe in vitro reconstituted assays to determine the molecular mechanisms of SNAREs, synip, and tomosyn. These methods can also be extended to the studies of other types of membrane fusion events.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    全细胞膜片钳是监测突触小泡分泌的标准方法。在这一章中,我们描述了全细胞膜片钳测量突触胞吐的基本步骤,旨在为该领域的研究人员提供参考。
    Whole-cell patch clamping is a standard method to monitor the secretion of synaptic vesicles. In this chapter, we describe the basic steps of whole-cell patch clamping for measuring synaptic exocytosis, aiming to provide reference for researchers who are new to this field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号