trans-translation

翻译
  • 文章类型: Journal Article
    假尿苷(Φ)合酶,RluD负责细菌23SrRNA的螺旋69(H69)中的三个Φ修饰。虽然通常是可有可无的,rluD对于翻译终止缺陷的细菌中的快速细胞生长至关重要。在缓慢生长的rluD细菌中,影响终止因子RF2和RF3的抑制因子频繁出现并恢复正常终止和快速细胞生长。在这里,我们描述了两个较弱的抑制器,影响rpsG,编码核糖体蛋白uS7和ssrA,编码tmRNA。在大肠杆菌的K-12菌株中,rpsG终止于TGA密码子。在抑制应变中,上游CAG到TAG终止密码子的改变导致缩短的uS7和缓慢生长的部分缓解,可能通过用更有效的TAG替换低效的TGA终止密码子。效率低下的终止事件,例如发生在一些rluD菌株中,是以转译为目标的。生长缓慢的ssrA基因失活,缺乏RluD和RF3的终止缺陷突变体也部分恢复了强劲的生长,最有可能是通过防止在缓慢终止的终止密码子处破坏核糖体上的完整多肽。最后,已经提出了RluD的额外角色,独立于其假尿苷合酶活性。这是基于以下观察:表达催化死亡(D139N或D139T)RluD蛋白的质粒仍然可以恢复大肠杆菌K-12rluD-突变体的稳健生长。然而,新构建的D139N和D139TrluD质粒没有任何恢复生长的活性,最初的观察结果可能是由于抑制剂的出现。
    The pseudouridine (ψ) synthase, RluD is responsible for three ψ modifications in the helix 69 (H69) of bacterial 23S rRNA. While normally dispensable, rluD becomes critical for rapid cell growth in bacteria that are defective in translation-termination. In slow-growing rluD- bacteria, suppressors affecting termination factors RF2 and RF3 arise frequently and restore normal termination and rapid cell growth. Here we describe two weaker suppressors, affecting rpsG, encoding ribosomal protein uS7 and ssrA, encoding tmRNA. In K-12 strains of E. coli, rpsG terminates at a TGA codon. In the suppressor strain, alteration of an upstream CAG to a TAG stop codon results in a shortened uS7 and partial alleviation of slow growth, likely by replacing an inefficient TGA stop codon with the more efficient TAG. Inefficient termination events, such as occurs in some rluD- strains, are targeted by trans-translation. Inactivation of the ssrA gene in slow-growing, termination-defective mutants lacking RluD and RF3, also partially restores robust growth, most probably by preventing destruction of completed polypeptides on ribosomes at slow-terminating stop codons. Finally, an additional role for RluD has been proposed, independent of its pseudouridine synthase activity. This is based on the observation that plasmids expressing catalytically dead (D139N or D139T) RluD proteins could nonetheless restore robust growth to an E. coli K-12 rluD- mutant. However, newly constructed D139N and D139T rluD plasmids do not have any growth-restoring activity and the original observations were likely due to the appearance of suppressors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌中的DNA完整性受到作用于DNA的各种因素的调节。以前已经证明转译对于暴露于某些DNA损伤剂的大肠杆菌细胞的存活是重要的。然而,这种敏感性的潜在机制知之甚少。在这项研究中,我们使用各种DNA损伤剂和突变背景,探讨了转译系统在维持基因组完整性方面的作用.相对生存力分析显示SsrA缺陷细胞对DNA损伤剂敏感,如萘啶酸(NA),紫外线辐射(UV),和甲磺酸甲酯(MMS)。通过删除sulA来拯救SsrA缺陷细胞的活力,尽管SsrA缺陷细胞中SulA的表达并不比野生型细胞更明显。使用Gam-GFP荧光报告基因的活细胞成像显示在DNA损伤期间SsrA缺陷细胞中双链断裂(DSB)增加。我们还表明,SsrA的核糖体拯救功能足以耐受DNA损伤。通过使用亚致死浓度的核糖体抑制抗生素(四环素)或通过突变编码RNaseH(rnhA)的基因,可以通过转录和翻译的部分解偶联来减轻DNA损伤敏感性。一起来看,我们的研究结果强调了转译系统在DNA损伤过程中维持基因组完整性和细菌存活的重要性.
    DNA integrity in bacteria is regulated by various factors that act on the DNA. trans-translation has previously been shown to be important for the survival of Escherichia coli cells exposed to certain DNA-damaging agents. However, the mechanisms underlying this sensitivity are poorly understood. In this study, we explored the involvement of the trans-translation system in the maintenance of genome integrity using various DNA-damaging agents and mutant backgrounds. Relative viability assays showed that SsrA-defective cells were sensitive to DNA-damaging agents, such as nalidixic acid (NA), ultraviolet radiation (UV), and methyl methanesulfonate (MMS). The viability of SsrA-defective cells was rescued by deleting sulA, although the expression of SulA was not more pronounced in SsrA-defective cells than in wild-type cells. Live cell imaging using a Gam-GFP fluorescent reporter showed increased double-strand breaks (DSBs) in SsrA-defective cells during DNA damage. We also showed that the ribosome rescue function of SsrA was sufficient for DNA damage tolerance. DNA damage sensitivity can be alleviated by partial uncoupling of transcription and translation by using sub-lethal concentrations of ribosome inhibiting antibiotic (tetracycline) or by mutating the gene coding for RNase H (rnhA). Taken together, our results highlight the importance of trans-translation system in maintaining genome integrity and bacterial survival during DNA damage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    跨翻译在整个细菌中是保守的,并且在许多物种中是必不可少的。高通量筛选确定了一种基于四唑的反式翻译抑制剂,KKL-55,具有广谱抗生素活性。KKL-55的生物素化版本从细菌裂解物中拉下热不稳定的延伸因子(EF-Tu)。体外纯化的EF-Tu结合KKL-55,Kd=2µM,确认高亲和力相互作用。X射线晶体结构显示KKL-55结合在EF-Tu的结构域3中,结合袋中残基的突变消除了KKL-55的结合。体外RNA结合测定显示KKL-55抑制EF-Tu和转移信使RNA(tmRNA)之间的结合,但不抑制EF-Tu和tRNA之间的结合。这些数据证明了抑制EF-Tu功能的新机制,并且表明EF-Tu·tmRNA结合的这种特异性抑制是抗生素开发的可行靶标。重要性延伸因子热不稳定(EF-Tu)是一种普遍保守的翻译因子,可介导tRNA和核糖体之间的生产性相互作用。在细菌中,EF-Tu还在转译期间将转移信使RNA(tmRNA)-SmpB递送至核糖体。我们报道了第一个小分子,KKL-55,其特异性抑制反式翻译中的EF-Tu活性而不影响其在正常翻译中的活性。KKL-55具有广谱抗生素活性,这表明靶向EF-Tu的tmRNA结合界面的化合物可以发展成为治疗耐药感染的新型抗生素。
    OBJECTIVE: Elongation factor thermo-unstable (EF-Tu) is a universally conserved translation factor that mediates productive interactions between tRNAs and the ribosome. In bacteria, EF-Tu also delivers transfer-messenger RNA (tmRNA)-SmpB to the ribosome during trans-translation. We report the first small molecule, KKL-55, that specifically inhibits EF-Tu activity in trans-translation without affecting its activity in normal translation. KKL-55 has broad-spectrum antibiotic activity, suggesting that compounds targeted to the tmRNA-binding interface of EF-Tu could be developed into new antibiotics to treat drug-resistant infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大肠杆菌有多种途径释放停滞在非终止mRNA3'末端的非生产性核糖体复合物:tmRNA(SsrARNA)介导的转译和ArfA/RF2或ArfB(YaeJ)的终止密码子非依赖性终止。arfAmRNA缺少终止密码子,其表达被转译抑制。因此,ArfA被认为是补充转译的核糖体拯救活性,但是ArfA表达的生理情况尚未阐明。这里,我们发现,与大肠杆菌ssrA相邻的CP4-57原蛋白的切除导致tmRNA失活,并将主要的挽救途径从转译转换为ArfA/RF2。这种“拯救转换”不仅重排了大肠杆菌的蛋白质组景观,还重排了表型,例如运动性。此外,在ArfA+细胞中丰度显著增加的蛋白质中,我们发现了ZntR,其mRNA作为非终止arfAmRNA的上游部分转录在一起。ZntR和重建的模型基因的抑制取决于下游非终止ORF的翻译,该ORF触发了多核苷酸磷酸化酶(PNPase)的转翻译偶联的核酸外切降解。即,我们的研究提供了一个新的翻译依赖性调节的例子,并重新定义了原标题切除的生理作用。
    Escherichia coli has multiple pathways to release nonproductive ribosome complexes stalled at the 3\' end of nonstop mRNA: tmRNA (SsrA RNA)-mediated trans-translation and stop codon-independent termination by ArfA/RF2 or ArfB (YaeJ). The arfA mRNA lacks a stop codon and its expression is repressed by trans-translation. Therefore, ArfA is considered to complement the ribosome rescue activity of trans-translation, but the physiological situations in which ArfA is expressed have not been elucidated. Here, we found that the excision of CP4-57 prophage adjacent to E. coli ssrA leads to the inactivation of tmRNA and switches the primary rescue pathway from trans-translation to ArfA/RF2. This \"rescue-switching\" rearranges not only the proteome landscape in E. coli but also the phenotype such as motility. Furthermore, among the proteins with significantly increased abundance in the ArfA+ cells, we found ZntR, whose mRNA is transcribed together as the upstream part of nonstop arfA mRNA. Repression of ZntR and reconstituted model genes depends on the translation of the downstream nonstop ORFs that trigger the trans-translation-coupled exonucleolytic degradation by polynucleotide phosphorylase (PNPase). Namely, our studies provide a novel example of trans-translation-dependent regulation and re-define the physiological roles of prophage excision.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管基因组高度减少,沙眼衣原体经历了一个复杂的发育周期,其中细菌区分以下两种功能和形态上不同的形式:非复制基本体(EB)和非传染性,复制网状体(RB)。EB和RB之间的转换不是由重新分配细胞内蛋白质的分裂事件介导的。相反,原发性(EB到RB)和继发性(RB到EB)分化可能都需要大量蛋白质周转。靶向蛋白质降解的一个系统是核糖体拯救的转译系统,在翻译过程中停滞的多肽用杂合tRNA-mRNA编码的SsrA标签标记,tmRNA。ClpX识别SsrA标记,导致ClpXP介导的降解。我们假设ClpX通过靶向蛋白质降解在衣原体分化中起作用。我们发现,与识别SsrA标记的底物相关的ClpX中特定基序内的关键残基(R230A)的突变导致消除了二次分化,而不会减少衣原体复制或发育周期的进展,如转录物所测量的。此外,通过化学和靶向遗传方法抑制转译也阻碍了衣原体的发育。tmRNA的敲低以及随后与SsrA标签中突变的等位基因的互补紧密地表现出ClpXR230A的过表达,因此表明ClpX对SsrA标记底物的识别在次级分化中起着至关重要的作用。一起来看,这些数据提供了对衣原体发育形式之间过渡要求的机械见解。重要性沙眼衣原体是细菌性性传播感染和可预防的感染性失明的主要原因。这种独特的有机体经历了传染性之间的发育过渡,非分裂形式和非传染性,划分形式。因此,衣原体发育周期是衣原体特异性抗生素的一个有吸引力的目标,这将最大限度地减少广谱抗生素对抗生素耐药性在其他生物体中传播的影响。然而,缺乏关于衣原体发育在分子水平上的知识阻碍了特定的鉴定,可下药的目标.这项工作描述了ClpXP的转译和蛋白质组周转的基本过程有助于衣原体分化的机制,衣原体生长和存活的关键方面。鉴于转译和ClpX在真细菌中几乎普遍存在,这种机制可能在其他细菌物种的发育周期中得到保留。此外,这项研究通过强调这些系统在整个细菌进化过程中的功能多样性,扩大了翻译和Clp蛋白酶的领域。
    Despite having a highly reduced genome, Chlamydia trachomatis undergoes a complex developmental cycle in which the bacteria differentiate between the following two functionally and morphologically distinct forms: the infectious, nonreplicative elementary body (EB) and the noninfectious, replicative reticulate body (RB). The transitions between EBs and RBs are not mediated by division events that redistribute intracellular proteins. Rather, both primary (EB to RB) and secondary (RB to EB) differentiation likely require bulk protein turnover. One system for targeted protein degradation is the trans-translation system for ribosomal rescue, where polypeptides stalled during translation are marked with an SsrA tag encoded by a hybrid tRNA-mRNA, tmRNA. ClpX recognizes the SsrA tag, leading to ClpXP-mediated degradation. We hypothesize that ClpX functions in chlamydial differentiation through targeted protein degradation. We found that mutation of a key residue (R230A) within the specific motif in ClpX associated with the recognition of SsrA-tagged substrates resulted in abrogated secondary differentiation while not reducing chlamydial replication or developmental cycle progression as measured by transcripts. Furthermore, inhibition of trans-translation through chemical and targeted genetic approaches also impeded chlamydial development. Knockdown of tmRNA and subsequent complementation with an allele mutated in the SsrA tag closely phenocopied the overexpression of ClpXR230A, thus suggesting that ClpX recognition of SsrA-tagged substrates plays a critical function in secondary differentiation. Taken together, these data provide mechanistic insight into the requirements for transitions between chlamydial developmental forms. IMPORTANCE Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections and preventable infectious blindness. This unique organism undergoes developmental transitions between infectious, nondividing forms and noninfectious, dividing forms. Therefore, the chlamydial developmental cycle is an attractive target for Chlamydia-specific antibiotics, which would minimize effects of broad-spectrum antibiotics on the spread of antibiotic resistance in other organisms. However, the lack of knowledge about chlamydial development on a molecular level impedes the identification of specific, druggable targets. This work describes a mechanism through which both the fundamental processes of trans-translation and proteomic turnover by ClpXP contribute to chlamydial differentiation, a critical facet of chlamydial growth and survival. Given the almost universal presence of trans-translation and ClpX in eubacteria, this mechanism may be conserved in developmental cycles of other bacterial species. Additionally, this study expands the fields of trans-translation and Clp proteases by emphasizing the functional diversity of these systems throughout bacterial evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细菌使用转译来拯救停滞的核糖体,并靶向不完整的蛋白质进行蛋白水解。尽管tRNA和转移信使RNA(tmRNA)之间有相似之处,转译的关键分子,新的结构和生化数据显示翻译和转译之间的重要差异在大多数步骤的途径。tmRNA及其结合伴侣,SmpB,结合在核糖体的A位点,但不会触发rRNA中的核苷酸的相同运动,这是tRNA识别密码子所需的。tmRNA-SmpB从核糖体的A位点移动到P位点而没有亚基旋转以产生杂合状态,并从P位点移动到核糖体外部的位点而不是E位点。在催化过程中,转肽到tmRNA似乎需要核糖体蛋白bL27,这对于翻译是不必要的,这表明该蛋白质可能由于转译而在细菌中保守。这些差异提供了对翻译的基本性质的见解,并为可能降低与真核核糖体交叉反应性的新抗生素提供靶标。
    Bacteria use trans-translation to rescue stalled ribosomes and target incomplete proteins for proteolysis. Despite similarities between tRNAs and transfer-messenger RNA (tmRNA), the key molecule for trans-translation, new structural and biochemical data show important differences between translation and trans-translation at most steps of the pathways. tmRNA and its binding partner, SmpB, bind in the A site of the ribosome but do not trigger the same movements of nucleotides in the rRNA that are required for codon recognition by tRNA. tmRNA-SmpB moves from the A site to the P site of the ribosome without subunit rotation to generate hybrid states, and moves from the P site to a site outside the ribosome instead of to the E site. During catalysis, transpeptidation to tmRNA appears to require the ribosomal protein bL27, which is dispensable for translation, suggesting that this protein may be conserved in bacteria due to trans-translation. These differences provide insights into the fundamental nature of trans-translation, and provide targets for new antibiotics that may have decrease cross-reactivity with eukaryotic ribosomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于微生物中不断增加的多药耐药性,我们发现并开发新的抗生素是至关重要的,尤其是分子具有与当今使用的抗生素不同的靶标和作用机制。翻译是一个基本的过程,使用细胞的大部分能量,核糖体已经是临床使用的一半以上抗生素的目标。然而,这个过程是高度规范的,并积极研究其质量控制机械作为新抑制剂的可能目标。在细菌中,核糖体停滞是危害细菌健康的常见事件,最严重的形式发生在核糖体在缺乏终止密码子的mRNA分子的3'末端停滞时。翻译是解决这个问题的主要和最复杂的质量控制机制,否则会导致低效甚至有毒的蛋白质合成。它基于由tmRNA和SmpB组成的复合物,因为真核生物中没有转译,但是细菌健康或生存是必需的,它是新抗生素的一个令人兴奋和现实的目标。这里,我们描述了当前和未来的前景,我们希望开发出新一代的反式翻译抑制剂。
    Because of the ever-increasing multidrug resistance in microorganisms, it is crucial that we find and develop new antibiotics, especially molecules with different targets and mechanisms of action than those of the antibiotics in use today. Translation is a fundamental process that uses a large portion of the cell\'s energy, and the ribosome is already the target of more than half of the antibiotics in clinical use. However, this process is highly regulated, and its quality control machinery is actively studied as a possible target for new inhibitors. In bacteria, ribosomal stalling is a frequent event that jeopardizes bacterial wellness, and the most severe form occurs when ribosomes stall at the 3\'-end of mRNA molecules devoid of a stop codon. Trans-translation is the principal and most sophisticated quality control mechanism for solving this problem, which would otherwise result in inefficient or even toxic protein synthesis. It is based on the complex made by tmRNA and SmpB, and because trans-translation is absent in eukaryotes, but necessary for bacterial fitness or survival, it is an exciting and realistic target for new antibiotics. Here, we describe the current and future prospects for developing what we hope will be a novel generation of trans-translation inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    当核糖体停滞在缺乏终止密码子的mRNA上时,蛋白质合成的停滞对所有细胞都是致命的风险。在细菌中,这种情况可以通过翻译质量控制系统得到纠正。转译的发生是因为两个主要伙伴的协同作用,转移信使RNA(tmRNA)和小蛋白B(SmpB)。这些以复杂的方式监测蛋白质合成,必要时进行干预以挽救停滞的核糖体。在这个过程中,不完整的新生肽被标记为破坏,有问题的mRNA被降解,以前停滞的核糖体被回收。在这篇“结构快照”文章中,我们在分子水平上描述了机制,在使用低温电子显微镜进行最新结构研究后更新的视图。
    The arrest of protein synthesis caused when ribosomes stall on an mRNA lacking a stop codon is a deadly risk for all cells. In bacteria, this situation is remedied by the trans-translation quality control system. Trans-translation occurs because of the synergistic action of two main partners, transfer-messenger RNA (tmRNA) and small protein B (SmpB). These act in complex to monitor protein synthesis, intervening when necessary to rescue stalled ribosomes. During this process, incomplete nascent peptides are tagged for destruction, problematic mRNAs are degraded and the previously stalled ribosomes are recycled. In this \'Structural Snapshot\' article, we describe the mechanism at the molecular level, a view updated after the most recent structural studies using cryo-electron microscopy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    翻译过程中核糖体停滞显著降低细胞活力,因为细胞必须花费资源合成新的核糖体。因此,所有细菌都发展了各种核糖体拯救机制。通常,核糖体的释放之前是tRNA-肽键的水解,但是,在某些情况下,由于某些因素的活性,核糖体可以继续翻译。这篇综述描述了核糖体拯救的机制,这要归功于转译和ArfA的活性,ArfB,Brfa,ArfT,HflX,和RqcP/H因子,以及通过EF-P的作用继续翻译,EF-4和EttA。尽管某些系统能够相互复制,它们中的大多数都有其独特的功能作用,有关的质量控制细菌翻译的某些异常引起的突变,胁迫栽培条件,或者抗生素.
    Ribosome stalling during translation significantly reduces cell viability, because cells have to spend resources on the synthesis of new ribosomes. Therefore, all bacteria have developed various mechanisms of ribosome rescue. Usually, the release of ribosomes is preceded by hydrolysis of the tRNA-peptide bond, but, in some cases, the ribosome can continue translation thanks to the activity of certain factors. This review describes the mechanisms of ribosome rescue thanks to trans-translation and the activity of the ArfA, ArfB, BrfA, ArfT, HflX, and RqcP/H factors, as well as continuation of translation via the action of EF-P, EF-4, and EttA. Despite the ability of some systems to duplicate each other, most of them have their unique functional role, related to the quality control of bacterial translation in certain abnormalities caused by mutations, stress cultivation conditions, or antibiotics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在细菌中,转译是挽救停滞的核糖体的主要质量控制体系。它由tmRNA介导,同时具有tRNA和mRNA特性的杂合RNA,还有小蛋白SmpB.因为转译在真核生物中不存在,但对于细菌的健康或生存是必要的,它是新型抗生素开发的一个有希望的目标。为方便筛选化学文库,已经创建了各种可靠的体外和体内系统来评估转翻译活性。然而,当前工作的目的是允许对病原菌的转译进行安全和容易的体外评估,显然是我们应该瞄准的目标.基于绿色荧光蛋白(GFP)在主动翻译过程中的重组,我们创造了一种无细胞试验,适用于快速评估ESKAPE细菌中的转译,有24种不同的可能组合。它可以用于容易的高通量筛选化合物以及探索这些病原体中的反式翻译机制。
    In bacteria, trans-translation is the major quality control system for rescuing stalled ribosomes. It is mediated by tmRNA, a hybrid RNA with properties of both a tRNA and a mRNA, and the small protein SmpB. Because trans-translation is absent in eukaryotes but necessary for bacterial fitness or survival, it is a promising target for the development of novel antibiotics. To facilitate screening of chemical libraries, various reliable in vitro and in vivo systems have been created for assessing trans-translational activity. However, the aim of the current work was to permit the safe and easy in vitro evaluation of trans-translation from pathogenic bacteria, which are obviously the ones we should be targeting. Based on green fluorescent protein (GFP) reassembly during active trans-translation, we have created a cell-free assay adapted to the rapid evaluation of trans-translation in ESKAPE bacteria, with 24 different possible combinations. It can be used for easy high-throughput screening of chemical compounds as well as for exploring the mechanism of trans-translation in these pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号