tmRNA

tmRNA
  • 文章类型: Journal Article
    虽然转译系统是一个很有前途的目标,用于抗菌的发展,其在肺炎克雷伯菌(KP)中的抗菌机制尚不清楚。考虑到tmRNA是转译的核心组成部分,本研究首先调查了缺乏转译活性(tmRNA缺失)的KP中各种环境压力引起的表型变化,然后旨在根据氨基糖苷类抗生素对转译的抑制活性,评估转译靶向抗生素组合(妥布霉素/环丙沙星)在临床KP分离株中的抗菌活性。我们发现,在高渗性(0.5和1MNaCl)的环境下,tmRNA缺失的菌株P4325/ΔssrA比野生型KP菌株P4325明显更易感,过氧化氢(40mM),和紫外线照射。在P4325/ΔssrA和P4325之间没有观察到在人血清下的生物膜形成和存活的显着差异。tmRNA缺失导致氨基糖苷类的MIC值降低两倍。至于膜的通透性,在存在或不存在维拉帕米和羰基氰-间氯苯腙(CCCP)的情况下,tmRNA缺失增加了KP的溴化乙锭(EtBr)摄取,在P4325/ΔssrA中利血平存在下,EtBr吸收降低,并在CCCP存在下减少了P4325/ΔssrA中的EtBr流出。时间杀死曲线和体外实验显示,靶向tmRNA的基于氨基糖苷的抗生素组合(妥布霉素/环丙沙星)具有显着的杀菌活性。因此,相应的tmRNA靶向抗生素组合(基于氨基糖苷)可能是对抗多药耐药KP的有效且有前景的治疗选择.
    Although the trans-translation system is a promising target for antcibiotic development, its antibacterial mechanism in Klebsiella pneumoniae (KP) is unclear. Considering that tmRNA was the core component of trans-translation, this study firstly investigated phenotypic changes caused by various environmental stresses in KP lacking trans-translation activities (tmRNA-deleted), and then aimed to evaluate antibacterial activities of the trans-translation-targeting antibiotic combination (tobramycin/ciprofloxacin) in clinical KP isolates based on inhibition activities of aminoglycosides against trans-translation. We found that the tmRNA-deleted strain P4325/ΔssrA was significantly more susceptible than the wild-type KP strain P4325 under environments with hypertonicity (0.5 and 1 M NaCl), hydrogen peroxide (40 mM), and UV irradiation. No significant differences in biofilm formation and survivals under human serum were observed between P4325/ΔssrA and P4325. tmRNA deletion caused twofold lower MIC values for aminoglycosides. As for the membrane permeability, tmRNA deletion increased ethidium bromide (EtBr) uptake of KP in the presence or absence of verapamil and carbonyl cyanide-m-chlorophenylhydrazone (CCCP), decreased EtBr uptake in presence of reserpine in P4325/ΔssrA, and reduced EtBr efflux in P4325/ΔssrA in the presence of CCCP. The time-kill curve and in vitro experiments revealed significant bactericidal activities of the tmRNA-targeting aminoglycoside-based antibiotic combination (tobramycin/ciprofloxacin). Thus, the corresponding tmRNA-targeting antibiotic combinations (aminoglycoside-based) might be effective and promising treatment options against multi-drug resistant KP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在噬菌体λ溶原中,λcI阻遏物由在λpRM启动子处起始的无前导序列转录物(lmRNA)编码。在缺乏核糖体蛋白uS2的rpsB突变体中翻译增强。尽管lmRNA的翻译起始在细菌中是保守的,古细菌,和真核生物,缺乏lmRNA翻译起始复合物的结构洞察力。这里,我们使用cryo-EM来解决宿主大肠杆菌突变体rpsB11的uS2缺陷70S核糖体的结构和具有λcIlmRNA和fMet-tRNAfMet的野生型70S复合物。重要的是,uS2缺陷的70S核糖体也缺乏蛋白bS21。抗Shine-Dalgarno(aSD)区域在结构上由bS21支持,因此后者的缺失导致aSD从正常的mRNA出口途径转移,缓解lmRNA的退出。监测碱基A1493和mRNA的A(+4)之间的π-堆积相互作用潜在地充当识别信号。库仑电荷流,由于缺乏uS2导致30S头部旋转增加,mRNA入口通道内的蠕动样动力学可能会促进lmRNA通过核糖体的传播。这些发现为未来研究lmRNA和mRNA的翻译机制和共同进化奠定了基础,包括转录本的确定的核糖体结合位点的出现。
    In bacteriophage λ lysogens, the λcI repressor is encoded by the leaderless transcript (lmRNA) initiated at the λpRM promoter. Translation is enhanced in rpsB mutants deficient in ribosomal protein uS2. Although translation initiation of lmRNA is conserved in bacteria, archaea, and eukaryotes, structural insight of a lmRNA translation initiation complex is missing. Here, we use cryo-EM to solve the structures of the uS2-deficient 70S ribosome of host E. coli mutant rpsB11 and the wild-type 70S complex with λcI lmRNA and fMet-tRNAfMet. Importantly, the uS2-deficient 70S ribosome also lacks protein bS21. The anti-Shine-Dalgarno (aSD) region is structurally supported by bS21, so that the absence of the latter causes the aSD to divert from the normal mRNA exit pathway, easing the exit of lmRNA. A π-stacking interaction between the monitor base A1493 and A(+4) of lmRNA potentially acts as a recognition signal. Coulomb charge flow, along with peristalsis-like dynamics within the mRNA entrance channel due to the increased 30S head rotation caused by the absence of uS2, are likely to facilitate the propagation of lmRNA through the ribosome. These findings lay the groundwork for future research on the mechanism of translation and the co-evolution of lmRNA and mRNA that includes the emergence of a defined ribosome-binding site of the transcript.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    缺乏核糖体蛋白uS2的大肠杆菌核糖体比野生型核糖体1更有效地翻译无引线转录本没有Shine-Dalgarno序列,翻译起始发生在突变体70S复合物上而不是30S起始复合物上。核糖体使用起始密码子(AUG)和转录物的第一个碱基,包括下游盒(DB)序列,作为识别信号。我们使用cryo-EM解决了在fmet-tRNAfMet存在下与无引线mRNA(lmRNA)结合的uS2缺陷的70S核糖体和野生型70S复合物的结构。重要的是,uS2缺陷的70S核糖体也缺乏蛋白bS21。抗Shine-Dalgarno(aSD)区域由bS21支持,后者的缺乏导致aSD从正常的mRNA出口途径转移。我们鉴定了监测碱基(1493A)和AUG后的lmRNA的第一个碱基(A+4)之间的π-堆积相互作用,并可能使其稳定。库仑电荷流动和交换以及mRNA进入通道内的蠕动样动力学可能促进lmRNA通过核糖体的传播。
    In bacteriophage λ lysogens, the λcI repressor is encoded by the leaderless transcript (lmRNA) initiated at the λpRM promoter. Translation is enhanced in rpsB mutants deficient in ribosomal protein uS2. Although translation initiation of lmRNA is conserved in bacteria, archaea, and eukaryotes, structural insight of a lmRNA translation initiation complex is missing. Here, we use cryo-EM to solve the structures of the uS2-deficient 70S ribosome of host E. coli mutant rpsB11 and the wild-type 70S complex with λcI lmRNA and fmet-tRNAfMet. Importantly, the uS2-deficient 70S ribosome also lacks protein bS21. The anti-Shine-Dalgarno (aSD) region is structurally supported by bS21, so that the absence of the latter causes the aSD to divert from the normal mRNA exit pathway, easing the exit of lmRNA. A π-stacking interaction between the monitor base A1493 and A(+4) of lmRNA potentially acts as a recognition signal. Coulomb charge flow, along with peristalsis-like dynamics within the mRNA entry channel due to the increased 30S head rotation caused by the absence of uS2, are likely to facilitate the propagation of lmRNA through the ribosome. These findings lay the groundwork for future research on the mechanism of translation and the co-evolution of lmRNA and mRNA that includes the emergence of a defined ribosome-binding site of the transcript.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    跨翻译在整个细菌中是保守的,并且在许多物种中是必不可少的。高通量筛选确定了一种基于四唑的反式翻译抑制剂,KKL-55,具有广谱抗生素活性。KKL-55的生物素化版本从细菌裂解物中拉下热不稳定的延伸因子(EF-Tu)。体外纯化的EF-Tu结合KKL-55,Kd=2µM,确认高亲和力相互作用。X射线晶体结构显示KKL-55结合在EF-Tu的结构域3中,结合袋中残基的突变消除了KKL-55的结合。体外RNA结合测定显示KKL-55抑制EF-Tu和转移信使RNA(tmRNA)之间的结合,但不抑制EF-Tu和tRNA之间的结合。这些数据证明了抑制EF-Tu功能的新机制,并且表明EF-Tu·tmRNA结合的这种特异性抑制是抗生素开发的可行靶标。重要性延伸因子热不稳定(EF-Tu)是一种普遍保守的翻译因子,可介导tRNA和核糖体之间的生产性相互作用。在细菌中,EF-Tu还在转译期间将转移信使RNA(tmRNA)-SmpB递送至核糖体。我们报道了第一个小分子,KKL-55,其特异性抑制反式翻译中的EF-Tu活性而不影响其在正常翻译中的活性。KKL-55具有广谱抗生素活性,这表明靶向EF-Tu的tmRNA结合界面的化合物可以发展成为治疗耐药感染的新型抗生素。
    OBJECTIVE: Elongation factor thermo-unstable (EF-Tu) is a universally conserved translation factor that mediates productive interactions between tRNAs and the ribosome. In bacteria, EF-Tu also delivers transfer-messenger RNA (tmRNA)-SmpB to the ribosome during trans-translation. We report the first small molecule, KKL-55, that specifically inhibits EF-Tu activity in trans-translation without affecting its activity in normal translation. KKL-55 has broad-spectrum antibiotic activity, suggesting that compounds targeted to the tmRNA-binding interface of EF-Tu could be developed into new antibiotics to treat drug-resistant infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管基因组高度减少,沙眼衣原体经历了一个复杂的发育周期,其中细菌区分以下两种功能和形态上不同的形式:非复制基本体(EB)和非传染性,复制网状体(RB)。EB和RB之间的转换不是由重新分配细胞内蛋白质的分裂事件介导的。相反,原发性(EB到RB)和继发性(RB到EB)分化可能都需要大量蛋白质周转。靶向蛋白质降解的一个系统是核糖体拯救的转译系统,在翻译过程中停滞的多肽用杂合tRNA-mRNA编码的SsrA标签标记,tmRNA。ClpX识别SsrA标记,导致ClpXP介导的降解。我们假设ClpX通过靶向蛋白质降解在衣原体分化中起作用。我们发现,与识别SsrA标记的底物相关的ClpX中特定基序内的关键残基(R230A)的突变导致消除了二次分化,而不会减少衣原体复制或发育周期的进展,如转录物所测量的。此外,通过化学和靶向遗传方法抑制转译也阻碍了衣原体的发育。tmRNA的敲低以及随后与SsrA标签中突变的等位基因的互补紧密地表现出ClpXR230A的过表达,因此表明ClpX对SsrA标记底物的识别在次级分化中起着至关重要的作用。一起来看,这些数据提供了对衣原体发育形式之间过渡要求的机械见解。重要性沙眼衣原体是细菌性性传播感染和可预防的感染性失明的主要原因。这种独特的有机体经历了传染性之间的发育过渡,非分裂形式和非传染性,划分形式。因此,衣原体发育周期是衣原体特异性抗生素的一个有吸引力的目标,这将最大限度地减少广谱抗生素对抗生素耐药性在其他生物体中传播的影响。然而,缺乏关于衣原体发育在分子水平上的知识阻碍了特定的鉴定,可下药的目标.这项工作描述了ClpXP的转译和蛋白质组周转的基本过程有助于衣原体分化的机制,衣原体生长和存活的关键方面。鉴于转译和ClpX在真细菌中几乎普遍存在,这种机制可能在其他细菌物种的发育周期中得到保留。此外,这项研究通过强调这些系统在整个细菌进化过程中的功能多样性,扩大了翻译和Clp蛋白酶的领域。
    Despite having a highly reduced genome, Chlamydia trachomatis undergoes a complex developmental cycle in which the bacteria differentiate between the following two functionally and morphologically distinct forms: the infectious, nonreplicative elementary body (EB) and the noninfectious, replicative reticulate body (RB). The transitions between EBs and RBs are not mediated by division events that redistribute intracellular proteins. Rather, both primary (EB to RB) and secondary (RB to EB) differentiation likely require bulk protein turnover. One system for targeted protein degradation is the trans-translation system for ribosomal rescue, where polypeptides stalled during translation are marked with an SsrA tag encoded by a hybrid tRNA-mRNA, tmRNA. ClpX recognizes the SsrA tag, leading to ClpXP-mediated degradation. We hypothesize that ClpX functions in chlamydial differentiation through targeted protein degradation. We found that mutation of a key residue (R230A) within the specific motif in ClpX associated with the recognition of SsrA-tagged substrates resulted in abrogated secondary differentiation while not reducing chlamydial replication or developmental cycle progression as measured by transcripts. Furthermore, inhibition of trans-translation through chemical and targeted genetic approaches also impeded chlamydial development. Knockdown of tmRNA and subsequent complementation with an allele mutated in the SsrA tag closely phenocopied the overexpression of ClpXR230A, thus suggesting that ClpX recognition of SsrA-tagged substrates plays a critical function in secondary differentiation. Taken together, these data provide mechanistic insight into the requirements for transitions between chlamydial developmental forms. IMPORTANCE Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections and preventable infectious blindness. This unique organism undergoes developmental transitions between infectious, nondividing forms and noninfectious, dividing forms. Therefore, the chlamydial developmental cycle is an attractive target for Chlamydia-specific antibiotics, which would minimize effects of broad-spectrum antibiotics on the spread of antibiotic resistance in other organisms. However, the lack of knowledge about chlamydial development on a molecular level impedes the identification of specific, druggable targets. This work describes a mechanism through which both the fundamental processes of trans-translation and proteomic turnover by ClpXP contribute to chlamydial differentiation, a critical facet of chlamydial growth and survival. Given the almost universal presence of trans-translation and ClpX in eubacteria, this mechanism may be conserved in developmental cycles of other bacterial species. Additionally, this study expands the fields of trans-translation and Clp proteases by emphasizing the functional diversity of these systems throughout bacterial evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    天黑链霉菌是研究链霉菌的模型生物。该属具有相关的医学和经济作用,因为它产生许多具有制药意义的生物活性代谢物,包括大多数商业化的抗生素。在这项生物信息学研究中,已经分析了S.coelicolor的转录组,以鉴定新的RNA种类,并定量在不同时间在固体和液体生长培养基培养物中注释和新转录本的表达。本研究中公开的主要特征是:(i)弥漫性反义转录;(ii)大量的转移信使RNA(tmRNA);(iii)rnpB转录本的丰度,对于RNase-P复合物至关重要;(iv)存在来自未知生物学功能的核糖体前RNA前导序列的丰富片段。总的来说,这项研究扩展了天色链球菌中ncRNAs的目录,并表明非编码转录在调节生物活性分子产生中的重要作用。
    Streptomyces coelicolor is a model organism for studying streptomycetes. This genus possesses relevant medical and economical roles, because it produces many biologically active metabolites of pharmaceutical interest, including the majority of commercialized antibiotics. In this bioinformatic study, the transcriptome of S. coelicolor has been analyzed to identify novel RNA species and quantify the expression of both annotated and novel transcripts in solid and liquid growth medium cultures at different times. The major characteristics disclosed in this study are: (i) the diffuse antisense transcription; (ii) the great abundance of transfer-messenger RNAs (tmRNA); (iii) the abundance of rnpB transcripts, paramount for the RNase-P complex; and (iv) the presence of abundant fragments derived from pre-ribosomal RNA leader sequences of unknown biological function. Overall, this study extends the catalogue of ncRNAs in S. coelicolor and suggests an important role of non-coding transcription in the regulation of biologically active molecule production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    芽孢杆菌菌株广泛分布于陆地和海洋环境,其中一些因其生物膜形成能力而被用作生物防治生物。在枯草芽孢杆菌中,生物膜的形成是通过复杂的网络进行微调的,要清楚地了解这一点仍然需要研究。在细菌中,tmRNA,由ssrA基因编码,催化转译,可以挽救在缺乏功能终止密码子的mRNA转录本上停滞的核糖体。tmRNA也影响一些细菌的生理生物过程。在这项研究中,我们在枯草芽孢杆菌中构建了一个ssrA突变体,发现ssrA突变体的生物膜形成在很大程度上受到了损害。此外,我们分离出了ssrA的生物膜形成抑制因子,其中生物膜形成恢复到甚至比野生型更强的水平。我们进一步用野生型进行RNAseq测定,ssrA突变体,和ssrA的抑制子,用于比较它们的转录组。通过分析转录组数据,我们预测了一些差异表达基因(DEGs)在枯草芽孢杆菌生物膜形成的tmRNA调控中的可能功能。最后,我们发现两个DEG的过度表达,acoA和yhjR,可以恢复ssrA突变体中生物膜的形成,这表明AcoA和YhjR是参与控制枯草芽孢杆菌生物膜形成的tmRNA调控网的直接调节因子。我们的数据可以提高有关芽孢杆菌生物膜形成中涉及的分子网络的知识,并为将来研究芽孢杆菌生物膜的操作提供新的靶标。
    Bacillus strains are widely distributed in terrestrial and marine environments, and some of them are used as biocontrol organisms for their biofilm-formation ability. In Bacillus subtilis, biofilm formation is fine-tuned by a complex network, a clear understanding of which still requires study. In bacteria, tmRNA, encoded by the ssrA gene, catalyzes trans-translation that can rescue ribosomes stalled on mRNA transcripts lacking a functional stop codon. tmRNA also affects physiological bioprocesses in some bacteria. In this study, we constructed a ssrA mutant in B. subtilis and found that the biofilm formation in the ssrA mutant was largely impaired. Moreover, we isolated a biofilm-formation suppressor of ssrA, in which the biofilm formation was restored to a level even stronger than that in the wild type. We further performed RNAseq assays with the wild type, ssrA mutant, and suppressor of ssrA for comparisons of their transcriptomes. By analyzing the transcriptomic data, we predicted the possible functions of some differentially expressed genes (DEGs) in the tmRNA regulation of biofilm formation in B. subtilis. Finally, we found that the overexpression of two DEGs, acoA and yhjR, could restore the biofilm formation in the ssrA mutant, indicating that AcoA and YhjR were immediate regulators involved in the tmRNA regulatory web controlling biofilm formation in B. subtilis. Our data can improve the knowledge about the molecular network involved in Bacillus biofilm formation and provide new targets for manipulation of Bacillus biofilms for future investigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细菌使用转译来拯救停滞的核糖体,并靶向不完整的蛋白质进行蛋白水解。尽管tRNA和转移信使RNA(tmRNA)之间有相似之处,转译的关键分子,新的结构和生化数据显示翻译和转译之间的重要差异在大多数步骤的途径。tmRNA及其结合伴侣,SmpB,结合在核糖体的A位点,但不会触发rRNA中的核苷酸的相同运动,这是tRNA识别密码子所需的。tmRNA-SmpB从核糖体的A位点移动到P位点而没有亚基旋转以产生杂合状态,并从P位点移动到核糖体外部的位点而不是E位点。在催化过程中,转肽到tmRNA似乎需要核糖体蛋白bL27,这对于翻译是不必要的,这表明该蛋白质可能由于转译而在细菌中保守。这些差异提供了对翻译的基本性质的见解,并为可能降低与真核核糖体交叉反应性的新抗生素提供靶标。
    Bacteria use trans-translation to rescue stalled ribosomes and target incomplete proteins for proteolysis. Despite similarities between tRNAs and transfer-messenger RNA (tmRNA), the key molecule for trans-translation, new structural and biochemical data show important differences between translation and trans-translation at most steps of the pathways. tmRNA and its binding partner, SmpB, bind in the A site of the ribosome but do not trigger the same movements of nucleotides in the rRNA that are required for codon recognition by tRNA. tmRNA-SmpB moves from the A site to the P site of the ribosome without subunit rotation to generate hybrid states, and moves from the P site to a site outside the ribosome instead of to the E site. During catalysis, transpeptidation to tmRNA appears to require the ribosomal protein bL27, which is dispensable for translation, suggesting that this protein may be conserved in bacteria due to trans-translation. These differences provide insights into the fundamental nature of trans-translation, and provide targets for new antibiotics that may have decrease cross-reactivity with eukaryotic ribosomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转译过程是用于停滞的核糖体加工截短的mRNA的核糖体拯救系统。ssrA和smpB基因在大多数细菌中发挥关键功能,但是有些物种要么失去了这些基因,要么核糖体拯救系统的功能被其他基因所取代。迄今为止,尚未详细分析无螺旋体科的核糖体拯救系统。这个家庭,在Mollicutes课上,包括无菌属和临时分类群“念珠菌属”。尽管它们是单系起源的,这两个进化枝可以通过以下特征来分开,例如不代表无精浆的主要病原体,而不是大多数植物的植物病原性。两个类群都减少了基因组,但是只有植物质基因组的特征是显著的不稳定和减少。尽管核糖体拯救系统具有普遍的相关性,信息缺乏编码,smpB和ssrA的基因组背景和假基因化及其作为系统发育标记的可能应用。在这里,我们提供了对无菌科成员核糖体拯救系统的全面分析。检查的螺旋藻科基因组编码核糖体拯救系统,这取决于ssrA编码的tmRNA与其结合蛋白SmpB联合作用。SMPB的保守基因合生性很明显,而ssrA显示不太保守的基因组背景。tmRNA序列的分析突出了蛋白水解标签序列和5'和3'末端的短保守位点的变异性。对SMPB的分析没有提供有关假基因编码的提示,但是他们确实建议将其用作虎尾草科的系统发育标记-根据16SrDNA拓扑结构。smpB的序列变异性为物种分配和系统发育分析提供了足够的信息。
    The trans-translation process is a ribosomal rescue system for stalled ribosomes processing truncated mRNA. The genes ssrA and smpB fulfil the key functions in most bacteria, but some species have either lost these genes or the function of the ribosomal rescue system is taken over by other genes. To date, the ribosomal rescue system has not been analysed in detail for the Acholeplasmataceae. This family, in the Mollicutes class, comprises the genus Acholeplasma and the provisional taxon \"Candidatus Phytoplasma\". Despite their monophyletic origin, the two clades can be separated by traits such as not representing primary pathogens for acholeplasmas versus being phytopathogenic for the majority of phytoplasmas. Both taxa share reduced genomes, but only phytoplasma genomes are characterised by a remarkable level of instability and reduction. Despite the general relevance of the ribosomal rescue system, information is lacking on coding, the genomic context and pseudogenisation of smpB and ssrA and their possible application as a phylogenetic marker. Herein, we provide a comprehensive analysis of the ribosomal rescue system in members of Acholeplasmataceae. The examined Acholeplasmataceae genomes encode a ribosomal rescue system, which depends on tmRNA encoded by ssrA acting in combination with its binding protein SmpB. Conserved gene synteny is evident for smpB, while ssrA shows a less conserved genomic context. Analysis of the tmRNA sequences highlights the variability of proteolysis tag sequences and short conserved sites at the 5\'- and 3\'-ends. Analyses of smpB provided no hints regarding the coding of pseudogenes, but they did suggest its application as a phylogenetic marker of Acholeplasmataceae - in accordance with 16S rDNA topology. Sequence variability of smpB provides sufficient information for species assignment and phylogenetic analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于微生物中不断增加的多药耐药性,我们发现并开发新的抗生素是至关重要的,尤其是分子具有与当今使用的抗生素不同的靶标和作用机制。翻译是一个基本的过程,使用细胞的大部分能量,核糖体已经是临床使用的一半以上抗生素的目标。然而,这个过程是高度规范的,并积极研究其质量控制机械作为新抑制剂的可能目标。在细菌中,核糖体停滞是危害细菌健康的常见事件,最严重的形式发生在核糖体在缺乏终止密码子的mRNA分子的3'末端停滞时。翻译是解决这个问题的主要和最复杂的质量控制机制,否则会导致低效甚至有毒的蛋白质合成。它基于由tmRNA和SmpB组成的复合物,因为真核生物中没有转译,但是细菌健康或生存是必需的,它是新抗生素的一个令人兴奋和现实的目标。这里,我们描述了当前和未来的前景,我们希望开发出新一代的反式翻译抑制剂。
    Because of the ever-increasing multidrug resistance in microorganisms, it is crucial that we find and develop new antibiotics, especially molecules with different targets and mechanisms of action than those of the antibiotics in use today. Translation is a fundamental process that uses a large portion of the cell\'s energy, and the ribosome is already the target of more than half of the antibiotics in clinical use. However, this process is highly regulated, and its quality control machinery is actively studied as a possible target for new inhibitors. In bacteria, ribosomal stalling is a frequent event that jeopardizes bacterial wellness, and the most severe form occurs when ribosomes stall at the 3\'-end of mRNA molecules devoid of a stop codon. Trans-translation is the principal and most sophisticated quality control mechanism for solving this problem, which would otherwise result in inefficient or even toxic protein synthesis. It is based on the complex made by tmRNA and SmpB, and because trans-translation is absent in eukaryotes, but necessary for bacterial fitness or survival, it is an exciting and realistic target for new antibiotics. Here, we describe the current and future prospects for developing what we hope will be a novel generation of trans-translation inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号