replicon

复制子
  • 文章类型: Journal Article
    多重耐药性(MDR)已在肠杆菌中引起了广泛关注。多个抗菌素耐药基因的转移,经常进行共轭不相容性F(IncF)质粒,并促进种间抗性传播,与沙门氏菌有关.和大肠杆菌在肉鸡。在埃及,许多抗菌药物的临床疗效有限,加剧了耐药性的增长。在这项研究中,筛选IncF组,并对耐药沙门氏菌进行鉴定。和分离自肉仔鸡的大肠杆菌。抗菌素耐药性概况,基于PCR的质粒固化前后细菌分离株的复制子分型,和IncF复制子等位基因分型进行了研究。5株大肠杆菌(5/31;16.13%)和沙门氏菌。(5/36;13.89%)对所检查的抗菌剂普遍敏感,85.07%的检测菌株为MDR和广泛耐药(XDR)。12个MDR和XDR大肠杆菌和沙门氏菌。检查分离株是否存在IncF复制子(FII,国际汽联,和FIB)。他们对氨苄青霉素有共同的抗药性,氨苄西林/舒巴坦,阿莫西林/克拉维酸,多西环素,头孢噻肟,还有粘菌素.所有分离株携带一至两个IncF复制子。FII-FIA-FIB+和FII-FIA+FIB-是主要的复制子模式。FIB是质粒固化后最常见的复制子。三个对12-14种抗生素具有抗性的XDR大肠杆菌分离株携带一个新的FIB复制子等位基因,具有四个核苷酸取代:C99→A,G112→T,C113→T,和G114→A.这些发现表明,肉鸡是IncF复制子的重要储库,在XDR肠杆菌中循环的IncF-FIB质粒不相容组高度分散。通过涉及IncF以外的复制子的其他全面流行病学研究来支持这些数据,可以为实施有效的政策以防止新复制子向人类传播提供见解。
    Multiple drug resistance (MDR) has gained pronounced attention among Enterobacterales. The transfer of multiple antimicrobial resistance genes, frequently carried on conjugative incompatibility F (IncF) plasmids and facilitating interspecies resistance transmission, has been linked to Salmonella spp. and E. coli in broilers. In Egypt, the growing resistance is exacerbated by the limited clinical efficacy of many antimicrobials. In this study, IncF groups were screened and characterized in drug-resistant Salmonella spp. and E. coli isolated from broilers. The antimicrobial resistance profile, PCR-based replicon typing of bacterial isolates pre- and post-plasmid curing, and IncF replicon allele sequence typing were investigated. Five isolates of E. coli (5/31; 16.13%) and Salmonella spp. (5/36; 13.89%) were pan-susceptible to the examined antimicrobial agents, and 85.07% of tested isolates were MDR and extensively drug-resistant (XDR). Twelve MDR and XDR E. coli and Salmonella spp. isolates were examined for the existence of IncF replicons (FII, FIA, and FIB). They shared resistance to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, doxycycline, cefotaxime, and colistin. All isolates carried from one to two IncF replicons. The FII-FIA-FIB+ and FII-FIA+FIB- were the predominant replicon patterns. FIB was the most frequently detected replicon after plasmid curing. Three XDR E. coli isolates that were resistant to 12-14 antimicrobials carried a newly FIB replicon allele with four nucleotide substitutions: C99→A, G112→T, C113→T, and G114→A. These findings suggest that broilers are a significant reservoir of IncF replicons with highly divergent IncF-FIB plasmid incompatibility groups circulating among XDR Enterobacterales. Supporting these data with additional comprehensive epidemiological studies involving replicons other than the IncF can provide insights for implementing efficient policies to prevent the spreading of new replicons to humans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多部分细菌基因组对基因组工程和其他复制子的建立提出了挑战。我们简化了三方基因组结构(3.65Mbp染色体,1.35Mbp大质粒pSymA,固氮植物共生体中华根瘤菌的1.68Mbp染色体pSymB)。通过靶向复制子融合产生具有双-和单片段基因组构型的菌株。我们的设计保留了关键的基因组特征,如复制率,GC歪斜,KOPS,和编码序列分布。在标准培养条件下,这些菌株的生长速率和野生型几乎相当,并保持了共生固氮的能力。在三复制子融合菌株中保持时空复制子组织和分离。复制起始编码基因的缺失,包括该菌株的psyma和psymb的oriVs,产生了一个以oriC为唯一复制起点的单克隆基因组,强烈不平衡的复制率,生长缓慢,oriC的异常细胞定位,和共生不足。细胞周期组氨酸激酶CckA中的抑制突变R436H和3.2Mbp倒置,两者都是单独的,基本上恢复了增长,但只有基因组重排恢复了共生能力。这些菌株将促进二级复制子在Meliloti中的整合,因此可用于基因组工程应用。比如产生杂交基因组。
    Multipartite bacterial genomes pose challenges for genome engineering and the establishment of additional replicons. We simplified the tripartite genome structure (3.65 Mbp chromosome, 1.35 Mbp megaplasmid pSymA, 1.68 Mbp chromid pSymB) of the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Strains with bi- and monopartite genome configurations were generated by targeted replicon fusions. Our design preserved key genomic features such as replichore ratios, GC skew, KOPS, and coding sequence distribution. Under standard culture conditions, the growth rates of these strains and the wild type were nearly comparable, and the ability for symbiotic nitrogen fixation was maintained. Spatiotemporal replicon organization and segregation were maintained in the triple replicon fusion strain. Deletion of the replication initiator-encoding genes, including the oriVs of pSymA and pSymB from this strain, resulted in a monopartite genome with oriC as the sole origin of replication, a strongly unbalanced replichore ratio, slow growth, aberrant cellular localization of oriC, and deficiency in symbiosis. Suppressor mutation R436H in the cell cycle histidine kinase CckA and a 3.2 Mbp inversion, both individually, largely restored growth, but only the genomic rearrangement recovered the symbiotic capacity. These strains will facilitate the integration of secondary replicons in S. meliloti and thus be useful for genome engineering applications, such as generating hybrid genomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自扩增RNA(saRNA)是多功能疫苗平台,其利用病毒RNA依赖性RNA聚合酶(RdRp)来扩增一旦在靶细胞内在病毒基因组的骨架内编码的目标抗原的信使RNA(mRNA)。近年来,更多的saRNA疫苗已经进行了临床试验,希望与常规mRNA方法相比减少疫苗接种剂量.使用N1-甲基-假尿苷(1mp),增强RNA稳定性并减少由RNA引发的先天免疫反应,是当前mRNA疫苗中包括的改进之一。在本研究中,我们评估了这种修饰的核苷在基于不同病毒的各种saRNA平台上的作用。结果表明,复制过程的不同阶段受到骨架病毒的影响。对于TNCL,一种Alphanodavirus属的昆虫病毒,复制因RdRp对病毒RNA的识别力差而受损。相比之下,翻译步骤在柯萨奇病毒B3(CVB3)中被严重废除,Picornaviridae家族的成员。最后,1熔点对Semliki森林病毒(SFV)的影响,在体外研究中没有损害,但是在体内测试免疫原性时没有观察到优势。
    Self-amplifying RNAs (saRNAs) are versatile vaccine platforms that take advantage of a viral RNA-dependent RNA polymerase (RdRp) to amplify the messenger RNA (mRNA) of an antigen of interest encoded within the backbone of the viral genome once inside the target cell. In recent years, more saRNA vaccines have been clinically tested with the hope of reducing the vaccination dose compared to the conventional mRNA approach. The use of N1-methyl-pseudouridine (1mΨ), which enhances RNA stability and reduces the innate immune response triggered by RNAs, is among the improvements included in the current mRNA vaccines. In the present study, we evaluated the effects of this modified nucleoside on various saRNA platforms based on different viruses. The results showed that different stages of the replication process were affected depending on the backbone virus. For TNCL, an insect virus of the Alphanodavirus genus, replication was impaired by poor recognition of viral RNA by RdRp. In contrast, the translation step was severely abrogated in coxsackievirus B3 (CVB3), a member of the Picornaviridae family. Finally, the effects of 1mΨ on Semliki forest virus (SFV), were not detrimental in in vitro studies, but no advantages were observed when immunogenicity was tested in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    近年来,新型DNA组装方法的发展为构建用于基础研究和生物技术应用的合成复制子铺平了道路。构建学习方法现在可以回答有关如何构建染色体以维持遗传信息的问题。在这里,我们描述了一个有效的管道,用于设计和组装合成,基于流行的模块化克隆(MoClo)系统的大肠杆菌次级染色体。
    The development of novel DNA assembly methods in recent years has paved the way for the construction of synthetic replicons to be used for basic research and biotechnological applications. A learning-by-building approach can now answer questions about how chromosomes must be constructed to maintain genetic information. Here we describe an efficient pipeline for the design and assembly of synthetic, secondary chromosomes in Escherichia coli based on the popular modular cloning (MoClo) system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    丙型肝炎病毒(HCV)的抗性相关替换(RAS)影响直接作用的抗病毒药物(DAA)的功效。在这项研究中,我们旨在阐明非结构(NS)5AQ24K/L28M/R30Q(或R30E)/A92KRAS共存的敏感性,在DAA再治疗失败的患者中观察到,并考虑新的治疗药物。我们使用亚基因组复制子系统,其中HCV基因型1B菌株1B-4被电穿孔到源自HuH-7细胞的OR6c细胞中(野生型[WT])。我们将WT基因转换为NS5AQ24K/L28M/R30Q/A92K或Q24/L28K/R30E/A92K。与WT相比,Q24K/L28M/R30Q/A92KRAS对daclatasvir具有36,000倍的抗性,440,000倍耐ledipasvir,6300倍耐velpatasvir,3100倍耐elbasvir,和1.8倍耐pibrentasvir。与WT相比,Q24K/L28M/R30E/A92KRAS对daclatasvir和ledipasvir的抗性为640,000倍,15万倍耐velpatasvir,44,000倍耐elbasvir,抗pibrentasvir1500倍。Q24K/L28M/R30E/A92KRAS对pibrentasvir的抗性是Q24K/L28M/R30Q/A92KRAS的816.3倍。此外,pibrentasvir和sofosbuvir的组合对这些RAS具有治疗效果.联合方案可以用NS5AQ24K/L28M/R30E/A92KRAS根除HCV。
    Resistance-associated substitutions (RASs) of hepatitis C virus (HCV) affect the efficacy of direct-acting antivirals (DAAs). In this study, we aimed to clarify the susceptibility of the coexistence of nonstructural (NS) 5A Q24K/L28M/R30Q (or R30E)/A92K RASs, which were observed in patients with DAAs re-treatment failure and to consider new therapeutic agents. We used a subgenomic replicon system in which HCV genotype 1B strain 1B-4 was electroporated into OR6c cells derived from HuH-7 cells (Wild-type [WT]). We converted WT genes to NS5A Q24K/L28M/R30Q/A92K or Q24/L28K/R30E/A92K. Compared with the WT, the Q24K/L28M/R30Q/A92K RASs was 36,000-fold resistant to daclatasvir, 440,000-fold resistant to ledipasvir, 6300-fold resistant to velpatasvir, 3100-fold resistant to elbasvir, and 1.8-fold resistant to pibrentasvir. Compared with the WT, the Q24K/L28M/R30E/A92K RASs was 640,000-fold resistant to daclatasvir and ledipasvir, 150,000-fold resistant to velpatasvir, 44,000-fold resistant to elbasvir, and 1500-fold resistant to pibrentasvir. The Q24K/L28M/R30E/A92K RASs was 816.3 times more resistant to pibrentasvir than the Q24K/L28M/R30Q/A92K RASs. Furthermore, a combination of pibrentasvir and sofosbuvir showed therapeutic efficacy against these RASs. Combination regimens may eradicate HCV with NS5A Q24K/L28M/R30E/A92K RASs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    真正的严重急性呼吸道综合症冠状病毒2(SARS-CoV-2)感染的动物模型需要在生物安全3级(BSL-3)密闭条件下进行操作。在本研究中,我们使用SARS-CoV-2的单周期感染性病毒复制子颗粒(VRP)系统建立了小鼠模型,该模型可以在BSL-2实验室中安全处理。VRP[ΔS-VRP(G)-Luc]包含SARS-CoV-2基因组,其中刺突基因被萤火虫荧光素酶(Fluc)报告基因(Rep-Luci)取代,并在表面掺入水泡性口炎病毒糖蛋白。经鼻内接种ΔS-VRP(G)-Luc可成功将Rep-Luci基因组导入小鼠肺,启动Rep-Luci的自我复制,因此,模拟真正的SARS-CoV-2病理诱导急性肺损伤。此外,可以使用生物发光成像方法监测报告子Fluc表达,允许在ΔS-VRP(G)-Luc感染的小鼠肺中快速和方便地确定病毒复制。经批准的抗SARS-CoV-2药物治疗后,VV116,病毒在感染小鼠肺部的复制显著减少,提示该动物模型用于抗病毒评价是可行的。总之,我们开发了符合BSL-2标准的SARS-CoV-2感染小鼠模型,提供一种先进的方法来研究病毒发病机理的各个方面,病毒-宿主相互作用,以及未来抗病毒疗法的疗效。重要急性呼吸道综合症冠状病毒2(SARS-CoV-2)在人类中具有高度传染性和致病性;因此,对真正的SARS-CoV-2的研究仅限于生物安全3级(BSL-3)实验室。然而,由于缺乏BSL-3设施和训练有素的人员,广泛的科学界对SARS-CoV-2研究的参与受到了极大的限制,阻碍了我们对基本病毒学的理解以及迫切需要的药物开发的进步。以前,我们的同事Jin等人。通过用Fluc报告基因(Rep-Luci)替换病毒基因组中的必需刺突基因,产生了SARS-CoV-2复制子,可以在BSL-2条件下安全操作。通过将Rep-Luci掺入表面携带水泡性口炎病毒糖蛋白的病毒复制子颗粒中,通过鼻内接种,我们成功地将Rep-Luci导入小鼠肺,开发模拟SARS-CoV-2感染的小鼠模型。我们的模型可以作为SARS-CoV-2病理学研究和BSL2遏制下抗病毒评估的有用平台。
    Animal models of authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require operation in biosafety level 3 (BSL-3) containment. In the present study, we established a mouse model employing a single-cycle infectious virus replicon particle (VRP) system of SARS-CoV-2 that can be safely handled in BSL-2 laboratories. The VRP [ΔS-VRP(G)-Luc] contains a SARS-CoV-2 genome in which the spike gene was replaced by a firefly luciferase (Fluc) reporter gene (Rep-Luci), and incorporates the vesicular stomatitis virus glycoprotein on the surface. Intranasal inoculation of ΔS-VRP(G)-Luc can successfully transduce the Rep-Luci genome into mouse lungs, initiating self-replication of Rep-Luci and, accordingly, inducing acute lung injury mimicking the authentic SARS-CoV-2 pathology. In addition, the reporter Fluc expression can be monitored using a bioluminescence imaging approach, allowing a rapid and convenient determination of viral replication in ΔS-VRP(G)-Luc-infected mouse lungs. Upon treatment with an approved anti-SARS-CoV-2 drug, VV116, the viral replication in infected mouse lungs was significantly reduced, suggesting that the animal model is feasible for antiviral evaluation. In summary, we have developed a BSL-2-compliant mouse model of SARS-CoV-2 infection, providing an advanced approach to study aspects of the viral pathogenesis, viral-host interactions, as well as the efficacy of antiviral therapeutics in the future.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious and pathogenic in humans; thus, research on authentic SARS-CoV-2 has been restricted to biosafety level 3 (BSL-3) laboratories. However, due to the scarcity of BSL-3 facilities and trained personnel, the participation of a broad scientific community in SARS-CoV-2 research had been greatly limited, hindering the advancement of our understanding on the basic virology as well as the urgently necessitated drug development. Previously, our colleagues Jin et al. had generated a SARS-CoV-2 replicon by replacing the essential spike gene in the viral genome with a Fluc reporter (Rep-Luci), which can be safely operated under BSL-2 conditions. By incorporating the Rep-Luci into viral replicon particles carrying vesicular stomatitis virus glycoprotein on their surface, and via intranasal inoculation, we successfully transduced the Rep-Luci into mouse lungs, developing a mouse model mimicking SARS-CoV-2 infection. Our model can serve as a useful platform for SARS-CoV-2 pathological studies and antiviral evaluation under BSL2 containment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自扩增mRNA(SAM)疫苗可以在疾病爆发时快速部署。合理的安全问题是基于甲病毒的SAM疫苗和循环病毒之间的重组潜力。这种理论风险需要在SAM疫苗批准的监管过程中进行评估。在这里,我们进行了广泛的体外和体内评估,以探索SAM疫苗与多种甲病毒和冠状病毒之间的重组。发现SAM疫苗通过超感染排除有效地限制甲病毒共感染,尽管一些共同复制仍然是可能的。使用敏感的基于细胞的检测,复制能力的甲病毒嵌合体在体外产生,但可重现,RNA重组事件。嵌合体在细胞培养中没有显示出增加的适应性。在C57BL/6J体内未检测到有活力的甲病毒嵌合体,Rag1-/-和Ifnar-/-小鼠,其中高水平的SAM疫苗和甲病毒在同一组织中共同复制。此外,没有观察到SAM-spike疫苗和猪冠状病毒之间的重组。总之,尽管SAM疫苗与α病毒重组的能力可能被视为环境安全问题,几个关键因素在很大程度上缓解了SAM疫苗接受者体内嵌合病毒的出现。
    Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    戊型肝炎病毒(HEV)是一种长期被忽视的RNA病毒,是人类急性病毒性肝炎的主要病原体。最近的数据表明,HEV有一个非常异质的高变区(HVR),可以耐受主要的基因组重排。在这项研究中,我们在一名利巴韦林治疗失败患者的血清样本中发现了先前未描述的序列片段的插入。这些插入增加了病毒复制,同时不影响亚基因组复制子测定中对利巴韦林的敏感性。所有插入都包含预测的核定位序列,HVR中赖氨酸残基的丙氨酸扫描诱变会影响病毒的复制。赖氨酸残基的顺序置换还改变了荧光染料偶联构建体中的细胞内定位。此外,HVR外的不同序列模式被鉴定为病毒决定簇,概括了增强作用.总之,描述了患者来源的插入可以增加HEV复制,并在HVR内外协同作用的病毒决定簇.这些结果将有助于理解在感染的临床过程中通过病毒和宿主序列抓取病毒适应的基本原理。
    Hepatitis E virus (HEV) is a long-neglected RNA virus and the major causative agent of acute viral hepatitis in humans. Recent data suggest that HEV has a very heterogeneous hypervariable region (HVR), which can tolerate major genomic rearrangements. In this study, we identify insertions of previously undescribed sequence snippets in serum samples of a ribavirin treatment failure patient. These insertions increase viral replication while not affecting sensitivity towards ribavirin in a subgenomic replicon assay. All insertions contain a predicted nuclear localization sequence and alanine scanning mutagenesis of lysine residues in the HVR influences viral replication. Sequential replacement of lysine residues additionally alters intracellular localization in a fluorescence dye-coupled construct. Furthermore, distinct sequence patterns outside the HVR are identified as viral determinants that recapitulate the enhancing effect. In conclusion, patient-derived insertions can increase HEV replication and synergistically acting viral determinants in and outside the HVR are described. These results will help to understand the underlying principles of viral adaptation by viral- and host-sequence snatching during the clinical course of infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这个协议中,我们概述了如何在生物安全1级(BSL1)环境中生产嵌合病毒疫苗.用烟草花叶病毒(TMV)外壳蛋白包裹的动物病毒载体RNA可以在植物中完全组装。将含有每种组分的农杆菌培养物一起接种到烟草叶中,4天后收获自组装的杂合嵌合病毒疫苗,并用简单的PEG沉淀纯化。病毒RNA递送载体来源于BSL1昆虫病毒,羊室病毒(FHV),并在人和动物细胞中复制,但不会全身传播。还提供聚乙二醇纯化方案以收集和纯化这些疫苗用于免疫学测试。在此更新中,我们还提供了一种用于反式共接种修饰的FHV蛋白A的方案,这显著提高了植物嵌合病毒疫苗的产量。
    In this protocol, we outline how to produce a chimeric viral vaccine in a biosafety level 1 (BSL1) environment. An animal viral vector RNA encapsidated with tobacco mosaic virus (TMV) coat protein can be fully assembled in planta. Agrobacterium cultures containing each component are inoculated together into tobacco leaves and the self-assembled hybrid chimeric viral vaccine is harvested 4 days later and purified with a simple PEG precipitation. The viral RNA delivery vector is derived from the BSL1 insect virus, Flock House virus (FHV), and replicates in human and animal cells but does not spread systemically. A polyethylene glycol purification protocol is also provided to collect and purify these vaccines for immunological tests. In this update, we also provide a protocol for in trans co-inoculation of a modified FHV protein A, which significantly increased the yield of in planta chimeric viral vaccine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    虽然mRNA疫苗已经显示出它们的价值,它们和灭活疫苗一样失败,即它们的半衰期有限,是不可复制的,并且因此限于翻译的材料量的疫苗有效载荷的大小。避免这些问题的新进展是将复制子RNA(RepRNA)技术与纳米技术相结合。RepRNA是源自至少一种必需结构蛋白基因缺陷的病毒基因组的大的自我复制RNA分子(通常12-15kb)。它们提供持续的抗原生产,随着时间的推移有效增加疫苗抗原有效载荷,没有产生传染性后代的风险。RepRNA的主要限制是RNA酶敏感性和树突状细胞(DC)的低效摄取,这需要克服有效的基于RNA的疫苗设计。我们采用可生物降解的递送载体来保护RepRNA并促进DC递送。将RepRNA与聚乙烯亚胺(PEI)缩合并将RepRNA封装到新型包被体复制子载体中是两种已被证明有效递送至DC和诱导体内免疫应答的方法。
    While mRNA vaccines have shown their worth, they have the same failing as inactivated vaccines, namely they have limited half-life, are non-replicating, and therefore limited to the size of the vaccine payload for the amount of material translated. New advances averting these problems are combining replicon RNA (RepRNA) technology with nanotechnology. RepRNA are large self-replicating RNA molecules (typically 12-15 kb) derived from viral genomes defective in at least one essential structural protein gene. They provide sustained antigen production, effectively increasing vaccine antigen payloads over time, without the risk of producing infectious progeny. The major limitations with RepRNA are RNase-sensitivity and inefficient uptake by dendritic cells (DCs), which need to be overcome for efficacious RNA-based vaccine design. We employed biodegradable delivery vehicles to protect the RepRNA and promote DC delivery. Condensing RepRNA with polyethylenimine (PEI) and encapsulating RepRNA into novel Coatsome-replicon vehicles are two approaches that have proven effective for delivery to DCs and induction of immune responses in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号