replicon

复制子
  • 文章类型: Journal Article
    背景和目的:碳青霉烯耐药性的全球传播以及由此导致的死亡率增加迫使世界卫生组织(WHO)将碳青霉烯耐药性肠杆菌科(CRE)作为全球优先病原体。我们的研究旨在确定埃及革兰氏阴性医院分离株中碳青霉烯酶编码基因和主要质粒不相容组的患病率。材料和方法:这项横断面研究在曼苏拉大学医院进行了12个月,2019年1月至12月。对所有分离株进行碳青霉烯抗性测试。通过常规聚合酶链反应(PCR)筛选所选择的分离株是否存在碳青霉烯酶基因,即blaKPC,blaIMP,BlaVIM,和blaNDM-1.使用商业PBRT试剂盒进行基于PCR的质粒复制子分型。结果:在150个分离株中,只有30例(20.0%)表现出耐碳青霉烯。肺炎克雷伯菌是所有分离细菌中耐药性最强的,blaNDM是主要的碳青霉烯酶基因,而最普遍的质粒复制子是F复制子组合(FIA,FIB,和FII)和A/C。仅在肺炎克雷伯菌中检测到质粒,大肠杆菌,阴沟肠杆菌,还有铜绿假单胞菌.值得注意的是,我们发现碳青霉烯酶基因和质粒复制子之间存在统计学上显著的关联,包括blaNDM,IncA/C,IncX结论:我们的研究表明,在我们的地区,质粒介导的碳青霉烯耐药细菌的数量惊人地上升。抗性基因和质粒的共存凸显了有针对性的抗生素监测计划以及在地方和国际层面开发替代治疗方案的重要性。根据我们的结果,我们建议对更多的肠杆菌科细菌进行大规模研究,测试其他碳青霉烯酶编码基因,并将复制子分型方法与其他质粒检测方法进行了比较。我们还建议制定一项国家行动计划,以控制埃及抗生素的不合理使用。
    Background and Objectives: The global spread of carbapenem resistance and the resulting increase in mortality forced the World Health Organization (WHO) to claim carbapenem-resistant enterobacteriaceae (CRE) as global priority pathogens. Our study aimed to determine the prevalence of carbapenemase-encoding genes and major plasmid incompatibility groups among Gram-negative hospital-based isolates in Egypt. Material and Methods: This cross-sectional study was carried out at Mansoura University Hospitals over 12 months, from January to December 2019. All the isolates were tested for carbapenem resistance. The selected isolates were screened by conventional polymerase chain reaction (PCR) for the presence of carbapenemase genes, namely blaKPC, blaIMP, blaVIM, and blaNDM-1. PCR-based plasmid replicon typing was performed using the commercial PBRT kit. Results: Out of 150 isolates, only 30 (20.0%) demonstrated carbapenem resistance. Klebsiella pneumoniae was the most resistant of all isolated bacteria, and blaNDM was the predominant carbapenemases gene, while the most prevalent plasmid replicons were the F replicon combination (FIA, FIB, and FII) and A/C. Plasmids were detected only in Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Pseudomonas aeruginosa. Remarkably, we found a statistically significant association between carbapenemase genes and plasmid replicons, including blaNDM, IncA/C, and IncX. Conclusions: Our study demonstrated an alarming rise of plasmid-mediated carbapenem-resistant bacteria in our locality. The coexistence of resistance genes and plasmids highlights the importance of a targeted antibiotic surveillance program and the development of alternative therapeutic options at the local and international levels. Based on our results, we suggest a large-scale study with more Enterobacteriaceae isolates, testing other carbapenemase-encoding genes, and comparing the replicon typing method with other plasmid detection methods. We also recommend a national action plan to control the irrational use of antibiotics in Egypt.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由严重急性呼吸道综合症冠状病毒2(SARS-CoV-2)引起的冠状病毒病-2019(COVID-19)大流行已经严重影响了世界各地的公共卫生。对SARS-CoV-2致病机制的深入研究对于大流行预防是迫切需要的。然而,SARS-CoV-2的大多数实验室研究必须在生物安全3级(BSL-3)实验室进行,极大地制约了相关实验的进展。在这项研究中,我们使用细菌人工染色体(BAC)方法在VeroE6细胞中组装SARS-CoV-2复制和转录系统,而没有病毒包膜形成,从而避免了冠状病毒暴露的风险。此外,改进的实时定量逆转录PCR(RT-qPCR)方法用于区分全长复制子RNA的复制和亚基因组RNA(sgRNA)的转录.使用SARS-CoV-2复制子,我们证明了SARS-CoV-2的核衣壳(N)蛋白在不连续合成过程中促进了sgRNA的转录。此外,两种N蛋白的高频突变体,R203K和S194L,能明显提高复制子的转录水平,暗示这些突变可能使SARS-CoV-2更快地传播和繁殖。此外,remdesivir和氯喹,在先前的研究中,两种众所周知的药物被证明对冠状病毒有效,也抑制了我们复制子的转录,表明该系统在抗病毒药物发现中的潜在应用。总的来说,我们开发了一种生物安全且有价值的SARS-CoV-2复制子系统,该系统可用于研究病毒RNA合成的机制,并且在新型抗病毒药物筛选中具有潜力。
    The coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seriously affected public health around the world. In-depth studies on the pathogenic mechanisms of SARS-CoV-2 is urgently necessary for pandemic prevention. However, most laboratory studies on SARS-CoV-2 have to be carried out in bio-safety level 3 (BSL-3) laboratories, greatly restricting the progress of relevant experiments. In this study, we used a bacterial artificial chromosome (BAC) method to assemble a SARS-CoV-2 replication and transcription system in Vero E6 cells without virion envelope formation, thus avoiding the risk of coronavirus exposure. Furthermore, an improved real-time quantitative reverse transcription PCR (RT-qPCR) approach was used to distinguish the replication of full-length replicon RNAs and transcription of subgenomic RNAs (sgRNAs). Using the SARS-CoV-2 replicon, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 facilitates the transcription of sgRNAs in the discontinuous synthesis process. Moreover, two high-frequency mutants of N protein, R203K and S194L, can obviously enhance the transcription level of the replicon, hinting that these mutations likely allow SARS-CoV-2 to spread and reproduce more quickly. In addition, remdesivir and chloroquine, two well-known drugs demonstrated to be effective against coronavirus in previous studies, also inhibited the transcription of our replicon, indicating the potential applications of this system in antiviral drug discovery. Overall, we developed a bio-safe and valuable replicon system of SARS-CoV-2 that is useful to study the mechanisms of viral RNA synthesis and has potential in novel antiviral drug screening.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于获得疫苗的机会有限,COVID-19大流行继续威胁着全球的医疗保健系统,次优治疗方案,以及新的和更具传染性的SARS-CoV-2变种的不断涌现。病毒基因和突变的反向遗传学研究已被证明对推进基础病毒研究非常有价值,导致治疗学的发展。通过将COVID-19相关病毒分离株(DK-AHH1)的序列克隆到细菌人工染色体(BAC)中,我们开发了一种功能性且用途广泛的全长SARS-CoV-2感染系统。将体外转录本RNA转染到VeroE6细胞中后回收的病毒显示出与DK-AHH1病毒分离株相似的生长动力学和remdesivir易感性。报告基因的插入,绿色荧光蛋白,和纳米荧光素酶进入ORF7基因组区域导致高水平的报告活性,这促进了高通量处理实验。我们发现假定的冠状病毒remdesivir抗性相关取代F480L和V570L-和自然发现的多态性A97V,P323L,和N491S,所有nsp12患者均未降低SARS-CoV-2对瑞德西韦的易感性.缺失穗(S)的纳米荧光素酶报告基因克隆,信封(E),膜(M)蛋白表现出高水平的瞬时复制,被Remdesivir抑制了,因此可以作为一种有效的非感染性亚基因组复制子系统。开发的SARS-CoV-2反向遗传学系统,包括重组体,以修饰具有自主基因组RNA复制的感染性病毒和非感染性亚基因组复制子,将允许高通量细胞培养研究-提供对这种冠状病毒的基本生物学的基本理解。我们已经证明了该系统在快速引入nsp12突变并研究其对remdesivir疗效的影响方面的实用性,在世界范围内用于治疗COVID-19。我们的系统提供了一个平台,可以有效地测试药物的抗病毒活性和SARS-CoV-2突变体的表型。
    The COVID-19 pandemic continues to threaten healthcare systems worldwide due to the limited access to vaccines, suboptimal treatment options, and the continuous emergence of new and more transmissible SARS-CoV-2 variants. Reverse-genetics studies of viral genes and mutations have proven highly valuable in advancing basic virus research, leading to the development of therapeutics. We developed a functional and highly versatile full-length SARS-CoV-2 infectious system by cloning the sequence of a COVID-19 associated virus isolate (DK-AHH1) into a bacterial artificial chromosome (BAC). Viruses recovered after RNA-transfection of in vitro transcripts into Vero E6 cells showed growth kinetics and remdesivir susceptibility similar to the DK-AHH1 virus isolate. Insertion of reporter genes, green fluorescent protein, and nanoluciferase into the ORF7 genomic region led to high levels of reporter activity, which facilitated high throughput treatment experiments. We found that putative coronavirus remdesivir resistance-associated substitutions F480L and V570L-and naturally found polymorphisms A97V, P323L, and N491S, all in nsp12-did not decrease SARS-CoV-2 susceptibility to remdesivir. A nanoluciferase reporter clone with deletion of spike (S), envelope (E), and membrane (M) proteins exhibited high levels of transient replication, was inhibited by remdesivir, and therefore could function as an efficient non-infectious subgenomic replicon system. The developed SARS-CoV-2 reverse-genetics systems, including recombinants to modify infectious viruses and non-infectious subgenomic replicons with autonomous genomic RNA replication, will permit high-throughput cell culture studies-providing fundamental understanding of basic biology of this coronavirus. We have proven the utility of the systems in rapidly introducing mutations in nsp12 and studying their effect on the efficacy of remdesivir, which is used worldwide for the treatment of COVID-19. Our system provides a platform to effectively test the antiviral activity of drugs and the phenotype of SARS-CoV-2 mutants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Rhizobium leguminosarum symbiovar trifolii strains TA1 and CC275e are nitrogen-fixing microsymbionts of Trifolium spp. and have been used as commercial inoculant strains for clovers in pastoral agriculture in Australia and New Zealand. Here we present the complete genome sequences of both strains, resolving their multipartite genome structures and allowing for future studies using genomic approaches.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The replicon system, which mimics viral genome replication in culture cells, has been widely used to analyze the genome replication of the hepatitis C virus (HCV). However, most HCV genomes used in the system include adaptive mutations (AMs) that are vital for replication in culture cells despite the nonexistence of such mutations in the genome of wild-type (WT) HCV in patients. In order to study the genome replications of WT HCV, new HCV subgenomic replicon (SGR) systems were established using Huh-7.5-derived cells producing Sec14-like protein 2 constitutively and SGR of KT9 (one of the HCV genotype 1b clones) with WT genome (SGR KT9WT) in this study. The replication efficiency and sensitivities of SGR KT9WT to anti-HCV drugs in the cloned cells permanently bearing replicon RNA, HS55-4 cells, were similar to those of reports using SGR, including AM. The SGR transient transfection system using SGR KT9WT and SGR KT9AM encoding secreted Nano-luciferase and HS55-4C cells established by the elimination of SGR KT9 RNA from HS55-4 cells, however, showed that the replication efficiency of SGR KT9WT was much lower than that of SGR KT9AM under a same condition. Furthermore, the sensitivities of SGR KT9WT to almost all tested anti-HCV reagents, except the inhibitor of miR-122, a cellular factor important for HCV replication, were quite low compared with SGR KT9AM. These results suggested that the new replicon systems might not only provide information about precise responses against new anti-HCV drugs but also reveal novel molecular mechanisms supporting negligent proliferation of HCV.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The most characteristic feature of the hepatitis C virus (HCV) genome in patients with chronic hepatitis C is its remarkable variability and diversity. To better understand this feature, we performed genetic analysis of HCV replicons recovered from two human hepatoma HuH-7-derived cell lines after 1, 3, 5, 7, and 9 years in culture: The cell lines 50-1 and sO harbored HCV 1B-1 and O strain-derived HCV replicons established in 2002 and 2003, respectively. The results revealed that genetic variations in both replicons accumulated in a time-dependent manner at a constant rate despite the maintenance of moderate diversity (less than 1.8% difference) between the clones and that the mutation rate in the 50-1 and sO replicons was 2.5 and 2.9 × 10-3 base substitutions/site/year, respectively. We found that the genetic distance of both replicons increased from 7.9% to 10.5% after 9 years in culture. In addition, we observed that the guanine + cytosine (GC) content of both replicon RNAs increased in a time-dependent manner, as observed in our previous studies. Finally, we demonstrated that the high sensitivity of both replicons to direct-acting antivirals was maintained even after 9 years in culture. Our results suggest that long-term cultured HCV replicon-harboring cells are a useful model for understanding the variability and diversity of the HCV genome and the drug sensitivity of HCV in patients with chronic hepatitis C.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The hepatitis C virus (HCV) subgenomic replicon is a valuable tool for studying virus replication and HCV drug development. Despite the fact that HCV genotype 1a (HCV1a) is the most prevalent genotype in the United States, few HCV1a reporter replicon constructs have been reported, and their replication capacities are not as efficient as those of HCV1b or 2a, especially in transient expression. In this study, we selected efficient HCV1a replicons and characterized the novel adaptive mutations derived from stable HCV1a (strain H77) replicon cells after G418 selection. These novel adaptive mutations were scored in NS3 (A1065V, C1073S, N1227D, D1431Y, and E1556G), NS4A (I1694T and E1709V), and NS4B (G1871C). The D1431Y mutation alone or combinations of other adaptive mutations introduced into the parental HCV1a replicon construct was observed to differentially enhance either transient or stable expression of replicon. In particular, two replicon mutants VDYG (A1065V, N1227D, D1431Y, and E1556G within NS3) and VDYGRG, VDYG with two additional adaptive mutations (NS4A-K1691R and NS4B-E1726G), displayed robust replication and exhibited no impairment in the susceptibility of replicon activity to various known HCV inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Co-resistance to fluoroquinolones and β-lactams results in treatment complications for uropathogenic Escherichia coli (UPEC) infections. This study aimed to detect the coexistence and co-transmission of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum β-lactamase (ESBL) genes in UPEC from Kolkata, India.
    Escherichia coli was detected biochemically from culture-positive urine samples. Antimicrobial resistance and ESBL production were confirmed by disk diffusion assay. Transfer of PMQR and ESBL genes was performed using azide-resistant E. coli J53 as recipient. PCR was conducted to identify PMQR and ESBL genes, plasmid incompatibility types, insertion sequences, integrons and ERIC-PCR patterns.
    PMQR determinants were detected in 50.0% (35/70) of ciprofloxacin-resistant isolates, with ESBL production in 42.9% (15/35) and a β-lactamase inhibitor-resistant phenotype in 51.4% (18/35). The highest co-occurrence (37.1%; 13/35) and co-transmission of aac(6\')-Ib-cr with blaTEM, blaCTX-M and blaOXA was observed. Among the conjugal plasmids, replicon types FrepB/FrepB+F1B were predominant, with rare incidences of A/C, N, X, I1, FIIS, L/M and H1. Distribution of integrons and ISEcp1 and IS26, either alone or in combination, irrespective of PMQR and ESBL gene types was observed. Discrete ERIC-PCR profiles indicated that acquisition of PMQR and ESBLs and their dissemination may be attributed to horizontal gene transfer.
    This study demonstrates for the first time the risk of co-transmission of fluoroquinolone and β-lactam resistance amongst UPEC from Kolkata, posing a major public-health threat and limiting treatment options. Monitoring at the molecular level is necessary to design appropriate prescription policies to combat the alarming rise in drug resistance amongst these uropathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication.
    METHODS: The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3\'end of the reporter gene and the VP2 start sequence to allow co-translational \'cleavage\' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones.
    RESULTS: Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing.
    CONCLUSIONS: NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The objective of this study was to perform an inventory of the extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae isolates responsible for infections in French hospitals and to assess the mechanisms associated with ESBL diffusion. A total of 200 nonredundant ESBL-producing Enterobacteriaceae strains isolated from clinical samples were collected during a multicenter study performed in 18 representative French hospitals. Antibiotic resistance genes were identified by PCR and sequencing experiments. The clonal relatedness between isolates was investigated by the use of the DiversiLab system. ESBL-encoding plasmids were compared by PCR-based replicon typing and plasmid multilocus sequence typing. CTX-M-15, CTX-M-1, CTX-M-14, and SHV-12 were the most prevalent ESBLs (8% to 46.5%). The three CTX-M-type EBSLs were significantly observed in Escherichia coli (37.1%, 24.2%, and 21.8%, respectively), and CTX-M-15 was the predominant ESBL in Klebsiella pneumoniae (81.1%). SHV-12 was associated with ESBL-encoding Enterobacter cloacae strains (37.9%). qnrB, aac(6\')-Ib-cr, and aac(3)-II genes were the main plasmid-mediated resistance genes, with prevalences ranging between 19.5% and 45% according to the ESBL results. Molecular typing did not identify wide clonal diffusion. Plasmid analysis suggested the diffusion of low numbers of ESBL-encoding plasmids, especially in K. pneumoniae and E. cloacae However, the ESBL-encoding genes were observed in different plasmid replicons according to the bacterial species. The prevalences of ESBL subtypes differ according to the Enterobacteriaceae species. Plasmid spread is a key determinant of this epidemiology, and the link observed between the ESBL-encoding plasmids and the bacterial host explains the differences observed in the Enterobacteriaceae species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号