magnetocapacitance

  • 文章类型: Journal Article
    我们报告了在室温下在Ni和外延非极性BiInO3薄膜之间的界面处观察到的磁电容效应。使用X射线光电子能谱(XPS)进行的详细表面研究表明,在Ni/BiInO3界面处形成了金属间Ni-Bi合金,并且随着Ni的增加,Bi4f和In3d核能级向更高的结合能转移厚度。后者推断BiInO3中的能带弯曲,对应于p型肖特基势垒的形成。Ni/BiInO3/(Ba,Sr)RuO3/NdScO3(110)异质结构显示出对施加的磁场和电压循环的显着依赖性,这可以归因于Ni/BiInO3界面附近的电压控制带弯曲和自旋极化电荷积累。磁电容效应可以在室温下实现,而不涉及多铁性材料。
    We report the observation of a magnetocapacitance effect at the interface between Ni and epitaxial nonpolar BiInO3 thin films at room temperature. A detailed surface study using X-ray photoelectron spectroscopy (XPS) reveals the formation of an intermetallic Ni-Bi alloy at the Ni/BiInO3 interface and a shift in the Bi 4f and In 3d core levels to higher binding energies with increasing Ni thickness. The latter infers band bending in BiInO3, corresponding to the formation of a p-type Schottky barrier. The current-voltage characteristics of the Ni/BiInO3/(Ba,Sr)RuO3/NdScO3(110) heterostructure show a significant dependence on the applied magnetic field and voltage cycling, which can be attributed to voltage-controlled band bending and spin-polarized charge accumulation in the vicinity of the Ni/BiInO3 interface. The magnetocapacitance effect can be realized at room temperature without involving multiferroic materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    测试了一种新型的基于石墨烯的量子霍尔标准,用于交流(ac)和直流(dc)下的电量子计量应用。该器件用Cr(CO)3功能化以控制电荷载流子密度,并具有基于NbTiN超导材料的分支霍尔触点。这项工作是对器件在交流状态下的特征电容和相关损耗以及在直流和交流精密电阻测量过程中的性能进行深入研究。
    A new type of graphene-based quantum Hall standards is tested for electrical quantum metrology applications at alternating current (ac) and direct current (dc). The devices are functionalized with Cr(CO)3 to control the charge carrier density and have branched Hall contacts based on NbTiN superconducting material. The work is an in-depth study about the characteristic capacitances and related losses in the ac regime of the devices and about their performance during precision resistance measurements at dc and ac.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The mutual control of the electric and magnetic properties of a multiferroic solid is of fundamental and great technological importance. In this article, the synthesis procedure of La0.2Pb0.7Fe12O19 ceramics was briefly described and the data acquired for the materials characterization is presented. This data article is related to the research article-Acta Mater. 2016, 121, 144 (j.actamat.2016.08.083). Electric polarization hysteresis loop and I-V curve, which help to confirm the ferroelectricity of La0.2Pb0.7Fe12O19 ceramics, were presented. Strong magnetic polarization data was also presented. The great variation of the dielectric constants along with the magnetic field has been presented which helped to demonstrat the giant magnetocapacitance of La0.2Pb0.7Fe12O19. All the datasets were collected at room temperature. Large ferroelectricity, strong magnetism and colossal magneto-capacitance effect have been all realized in one single phase La0.2Pb0.7Fe12O19 at room temperature.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The coupling between magnetization and polarization in a room temperature multiferroic (Pb(Zr,Ti)O3 -Pb(Fe,Ta)O3 ) is explored by monitoring the changes in capacitance that occur when a magnetic field is applied in each of three orthogonal directions. Magnetocapacitance effects, consistent with P(2) M(2) coupling, are strongest when fields are applied in the plane of the single crystal sheet investigated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Bilayer thin films of BiFeO3-BaTiO3 at different thicknesses of BiFeO3 were prepared by RF-magnetron sputtering technique. A pure phase polycrystalline growth of thin films was confirmed from XRD results. Significantly improved ferroelectric polarization (2Pr ∼ 30 μC/cm(2)) and magnetic moment (Ms ∼ 33 emu/cc) were observed at room temperature. Effect of ferroelectric polarization on current conduction across the interface has been explored. Accumulation and depletion of charges at the bilayer interface were analyzed by current-voltage measurements which were further confirmed from hysteretic dynamic resistance and capacitance voltage profiles. Magnetoelectric coupling due to induced charges at grain boundaries of bilayer interface was further investigated by room temperature magnetocapacitance analysis. A room temperature magnetocapacitance was found to originate from induced charge at the bilayer interface which can be manipulated by varying the thickness of BFO to obtain higher ME coupling coefficient. Dynamic magnetoelectric coupling was investigated, and maximum longitudinal magnetoelectric coupling was observed to be 61 mV/cm·Oe at 50 nm thickness of BiFeO3. The observed magnetoelectric properties are potentially useful for novel room temperature magnetoelectric and spintronic device applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号