induced pluripotent stem cell

诱导多能干细胞
  • 文章类型: Journal Article
    COVID-19患者的不良心脏结局,特别是那些已经有心脏病的人,激发基于人类细胞的芯片上器官模型的发展,以概括心脏损伤和功能障碍,并筛选心脏保护性疗法。这里,我们开发了一种芯片心脏模型来研究SARS-CoV-2在健康心肌中的发病机理,该模型由人诱导多能干细胞(iPSC)衍生的心肌细胞和心功能不全模型建立,模仿血管紧张素II(AngII)引起的先前存在的高血压疾病的方面。我们概述了SARS-CoV-2引起的心脏损伤的细胞病变特征,包括逐渐受损的收缩功能和钙处理,凋亡,和肌节混乱。与单独的SARS-CoV-2相比,在AngII治疗的芯片心脏中存在SARS-CoV-2会降低收缩力,并较早地发生收缩功能障碍,并大大增强了炎性细胞因子。为了开发潜在的疗法,我们评估了来自人类iPSC的细胞外囊泡(EV)的心脏保护作用,该作用减轻了收缩力的损害,细胞凋亡减少,减少肌节蛋白的破坏,增强β-氧化基因表达。AngII或EV治疗均不影响病毒载量。我们鉴定了微小RNAmiR-20a-5p和miR-19a-3p作为这些EV的心脏保护作用的潜在介质。
    Adverse cardiac outcomes in COVID-19 patients, particularly those with preexisting cardiac disease, motivate the development of human cell-based organ-on-a-chip models to recapitulate cardiac injury and dysfunction and for screening of cardioprotective therapeutics. Here, we developed a heart-on-a-chip model to study the pathogenesis of SARS-CoV-2 in healthy myocardium established from human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and a cardiac dysfunction model, mimicking aspects of preexisting hypertensive disease induced by angiotensin II (Ang II). We recapitulated cytopathic features of SARS-CoV-2-induced cardiac damage, including progressively impaired contractile function and calcium handling, apoptosis, and sarcomere disarray. SARS-CoV-2 presence in Ang II-treated hearts-on-a-chip decreased contractile force with earlier onset of contractile dysfunction and profoundly enhanced inflammatory cytokines compared to SARS-CoV-2 alone. Toward the development of potential therapeutics, we evaluated the cardioprotective effects of extracellular vesicles (EVs) from human iPSC which alleviated the impairment of contractile force, decreased apoptosis, reduced the disruption of sarcomeric proteins, and enhanced beta-oxidation gene expression. Viral load was not affected by either Ang II or EV treatment. We identified MicroRNAs miR-20a-5p and miR-19a-3p as potential mediators of cardioprotective effects of these EVs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    视网膜疾病的患病率不断上升-尤其是,年龄相关性黄斑变性和遗传性视网膜疾病对眼科医学提出了严峻的挑战,通常导致不可逆转的视力丧失。目前的治疗是有限的,并且通常不能解决视网膜细胞的潜在损失。本文探讨了基于干细胞的疗法作为视网膜再生的有希望的途径的潜力。我们回顾了干细胞技术的最新进展,专注于胚胎干细胞(ESC),多能干细胞(PSC),和间充质干细胞(MSCs),以及它们分化成视网膜细胞类型的能力。我们讨论了干细胞移植的挑战,比如免疫排斥,整合到宿主视网膜中,功能恢复。检查了先前和正在进行的临床试验,以突出这些新疗法的疗效和安全性。此外,我们讨论干细胞研究的伦理考虑和监管框架。我们的分析表明,尽管基于干细胞的疗法为治疗视网膜疾病提供了开创性的方法,需要进一步研究以确保长期安全性并优化治疗结果.这篇综述总结了干细胞治疗的临床证据和目前利用干细胞治疗视网膜变性的局限性。如年龄相关性黄斑变性,视网膜色素变性,和Stargardt的病.
    The escalating prevalence of retinal diseases-notably, age-related macular degeneration and hereditary retinal disorders-poses an intimidating challenge to ophthalmic medicine, often culminating in irreversible vision loss. Current treatments are limited and often fail to address the underlying loss of retinal cells. This paper explores the potential of stem-cell-based therapies as a promising avenue for retinal regeneration. We review the latest advancements in stem cell technology, focusing on embryonic stem cells (ESCs), pluripotent stem cells (PSCs), and mesenchymal stem cells (MSCs), and their ability to differentiate into retinal cell types. We discuss the challenges in stem cell transplantation, such as immune rejection, integration into the host retina, and functional recovery. Previous and ongoing clinical trials are examined to highlight the therapeutic efficacy and safety of these novel treatments. Additionally, we address the ethical considerations and regulatory frameworks governing stem cell research. Our analysis suggests that while stem-cell-based therapies offer a groundbreaking approach to treating retinal diseases, further research is needed to ensure long-term safety and to optimize therapeutic outcomes. This review summarizes the clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration, such as age-related macular degeneration, retinitis pigmentosa, and Stargardt\'s disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人类诱导多能干细胞(hiPSC)来源的肠道类器官是研究发育生物学和个性化治疗的有价值的工具,但是它们的封闭拓扑和相对不成熟的状态限制了应用。这里,我们使用芯片上器官技术在更生理的体外微环境中开发出具有顶端和基底外侧通路的hiPSC衍生肠屏障。为了沿着隐窝-绒毛轴复制生长因子梯度,我们将细胞局部暴露于扩增和分化培养基中。在这些条件下,肠上皮细胞自组织成具有生理屏障完整性的绒毛样褶皱,肌成纤维细胞和神经元在底部通道中出现并形成上皮下组织。生长因子梯度有效地平衡分裂和成熟细胞类型,并诱导肠上皮成分,包括吸收和分泌谱系,类似于人类小肠的成分。这种特征良好的hiPSC衍生的芯片肠系统可以促进对人类小肠中的生理过程和治疗开发的个性化研究。
    Human induced pluripotent stem cell (hiPSC)-derived intestinal organoids are valuable tools for researching developmental biology and personalized therapies, but their closed topology and relative immature state limit applications. Here, we use organ-on-chip technology to develop a hiPSC-derived intestinal barrier with apical and basolateral access in a more physiological in vitro microenvironment. To replicate growth factor gradients along the crypt-villus axis, we locally expose the cells to expansion and differentiation media. In these conditions, intestinal epithelial cells self-organize into villus-like folds with physiological barrier integrity, and myofibroblasts and neurons emerge and form a subepithelial tissue in the bottom channel. The growth factor gradients efficiently balance dividing and mature cell types and induce an intestinal epithelial composition, including absorptive and secretory lineages, resembling the composition of the human small intestine. This well-characterized hiPSC-derived intestine-on-chip system can facilitate personalized studies on physiological processes and therapy development in the human small intestine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    心力衰竭(HF)是一种危及生命的疾病,可通过药物治疗和外科手术如心脏移植和左心室辅助装置(LVAD)进行治疗。然而,从长远来看,这些治疗方法可能缺乏有效性,并且与心脏移植中供体短缺等问题有关,和感染,中风,或LVAD的胃肠道出血。因此,仍然需要替代治疗策略.在这方面,干细胞疗法已被引入用于治疗HF,许多临床前和临床研究正在采用一系列干细胞品种。这些干细胞,如胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs),已被证明可以改善心脏功能并减轻左心室重塑。IPSC,具有无限增殖和分化为心肌细胞的能力,是心肌再生治疗的有前途的细胞来源。在这次审查中,我们讨论了以下主题:(1)什么是iPSCs;(2)iPSC-CM翻译的局限性和解决方案;(3)当前的治疗性临床试验.
    Heart failure (HF) is a life-threatening disorder and is treated by drug therapies and surgical interventions such as heart transplantation and left ventricular assist device (LVAD). However, these treatments can lack effectiveness in the long term and are associated with issues such as donor shortage in heart transplantation, and infection, stroke, or gastrointestinal bleeding in LVADs. Therefore, alternative therapeutic strategies are still needed. In this respect, stem cell therapy has been introduced for the treatment of HF and numerous preclinical and clinical studies are employing a range of stem cell varieties. These stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have been shown to improve cardiac function and attenuate left ventricular remodeling. IPSCs, which have a capacity for unlimited proliferation and differentiation into cardiomyocytes, are a promising cell source for myocardial regeneration therapy. In this review, we discuss the following topics: (1) what are iPSCs; (2) the limitations and solutions for the translation of iPSC-CMs practically; and (3) the current therapeutic clinical trials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    利用由诱导多能干细胞(iPSC-CM)产生的心肌细胞的细胞疗法提供了作为慢性缺血性心脏病治疗的心脏再生的潜在途径。这里,我们报告了成功的长期植入和体内成熟的自体iPSC-CM在两个恒河猴与小,亚临床慢性心肌梗塞,都没有免疫抑制。使用钠/碘转运体(NIS)报告基因的纵向正电子发射断层扫描成像显示,移植物稳定超过6个月和12个月,没有畸胎瘤形成.组织学分析表明,移植的iPSC-CM成熟并与内源性心肌整合的能力,没有免疫细胞浸润或排斥的迹象。相比之下,同种异体iPSC-CM在移植后8周内被排斥。这项研究提供了迄今为止在任何大型动物模型中最长期的安全性和成熟度数据。解决了关于自体iPSC疗法的新抗原免疫反应性的问题,并表明自体iPSC-CM将类似地植入并在人类心脏中成熟。
    Cellular therapies with cardiomyocytes produced from induced pluripotent stem cells (iPSC-CMs) offer a potential route to cardiac regeneration as a treatment for chronic ischemic heart disease. Here, we report successful long-term engraftment and in vivo maturation of autologous iPSC-CMs in two rhesus macaques with small, subclinical chronic myocardial infarctions, all without immunosuppression. Longitudinal positron emission tomography imaging using the sodium/iodide symporter (NIS) reporter gene revealed stable grafts for over 6 and 12 months, with no teratoma formation. Histological analyses suggested capability of the transplanted iPSC-CMs to mature and integrate with endogenous myocardium, with no sign of immune cell infiltration or rejection. By contrast, allogeneic iPSC-CMs were rejected within 8 weeks of transplantation. This study provides the longest-term safety and maturation data to date in any large animal model, addresses concerns regarding neoantigen immunoreactivity of autologous iPSC therapies, and suggests that autologous iPSC-CMs would similarly engraft and mature in human hearts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管对银纳米粒子(AgNP)毒性进行了二十年的研究,尚未建立暴露的安全阈值,尽管对于风险评估和监管决策至关重要。传统上,使用未观察到的不良反应水平(NOAEL)方法,从动物研究中顶端终点的剂量反应得出起点(PoD)值,或基准剂量(BMD)建模。为了开发新的方法方法(NAM),为AgNPs的人类风险评估提供信息,我们在暴露于广泛浓度(0.01-25μg/ml)的AgNPs24小时后,对来自人诱导多能干细胞(iPSCs)的肝细胞的转录组变化进行了浓度响应建模。对于与AgNPs的作用模式(MOA)相关的途径,得出了0.21μg/ml的合理转录组PoD,对于与AgNPs的MOA没有明显关联的基因本体论(GO)术语,更保守的PoD为0.10μg/ml。参考剂量(RfD)可以从PoD中的任一个计算,作为AgNP暴露的安全阈值。当前的研究说明了使用人类细胞作为NAM的体外转录组浓度响应研究对于缺乏足够的毒性数据来告知人类风险评估的化学物质的毒性研究的有用性。
    Despite two decades of research on silver nanoparticle (AgNP) toxicity, a safe threshold for exposure has not yet been established, albeit being critically needed for risk assessment and regulatory decision-making. Traditionally, a point-of-departure (PoD) value is derived from dose response of apical endpoints in animal studies using either the no-observed-adverse-effect level (NOAEL) approach, or benchmark dose (BMD) modeling. To develop new approach methodologies (NAMs) to inform human risk assessment of AgNPs, we conducted a concentration response modeling of the transcriptomic changes in hepatocytes derived from human induced pluripotent stem cells (iPSCs) after being exposed to a wide range concentration (0.01-25 μg/ml) of AgNPs for 24 h. A plausible transcriptomic PoD of 0.21 μg/ml was derived for a pathway related to the mode-of-action (MOA) of AgNPs, and a more conservative PoD of 0.10 μg/ml for a gene ontology (GO) term not apparently associated with the MOA of AgNPs. A reference dose (RfD) could be calculated from either of the PoDs as a safe threshold for AgNP exposure. The current study illustrates the usefulness of in vitro transcriptomic concentration response study using human cells as a NAM for toxicity study of chemicals that lack adequate toxicity data to inform human risk assessment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已经开发了具有不同物理化学因素的细胞重编程技术,以提高诱导多能干细胞(iPSC)的重编程效率。超声是一种临床应用的非接触生物物理因子,已知用于调节各种细胞行为,但仍未对细胞重编程进行研究。这里,我们提出了一种新的使用低强度超声(LIUS)的重编程策略,以改善体外和体内iPSCs的细胞重编程。在三维微环境条件下,增加的LIUS刺激显示iPSC的细胞重编程增强。LIUS促进的细胞重编程过程伴随着间充质向上皮转化和组蛋白修饰的增加。LIUS刺激瞬时调节细胞骨架重排,随着膜流动性和流动性的增加,增加HA/CD44相互作用。此外,具有HA水凝胶的LIUS刺激可用于人细胞和体内环境的应用,用于增强的重编程细胞进入iPSC。因此,使用组合3D微环境系统进行LIUS刺激可以改善体外和体内环境中的细胞重编程,可应用于各种生物医学领域。
    Cellular reprogramming technologies have been developed with different physicochemical factors to improve the reprogramming efficiencies of induced pluripotent stem cells (iPSCs). Ultrasound is a clinically applied noncontact biophysical factor known for regulating various cellular behaviors but remains uninvestigated for cellular reprogramming. Here, we present a new reprogramming strategy using low-intensity ultrasound (LIUS) to improve cellular reprogramming of iPSCs in vitro and in vivo. Under 3D microenvironment conditions, increased LIUS stimulation shows enhanced cellular reprogramming of the iPSCs. The cellular reprogramming process facilitated by LIUS is accompanied by increased mesenchymal to epithelial transition and histone modification. LIUS stimulation transiently modulates the cytoskeletal rearrangement, along with increased membrane fluidity and mobility to increase HA/CD44 interactions. Furthermore, LIUS stimulation with HA hydrogel can be utilized in application of both human cells and in vivo environment, for enhanced reprogrammed cells into iPSCs. Thus, LIUS stimulation with a combinatorial 3D microenvironment system can improve cellular reprogramming in vitro and in vivo environments, which can be applied in various biomedical fields.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    造血在整个生命中持续产生来自造血干细胞(HSC)的所有类型的血细胞。代谢状态是HSC自我更新和分化的已知调节因子,但是代谢传感器是否以及如何进行O-GlcNAcylation,可以通过抑制其循环酶O-GlcNAcase(OGA)和O-GlcNAc转移酶(OGT)来调节,对造血的贡献在很大程度上仍然未知。在这里,等基因,OGA耗尽(OGAi)和OGT耗尽(OGTi)人类诱导多能干细胞(hiPSCs)的单细胞克隆成功地从主hiPSC系MUSIi012-A,从包含表观遗传记忆的CD34造血干/祖细胞(HSPC)重新编程。已建立的OGAi和OGTihiPSC表现出细胞O-GlcNAcylation的增加或减少,伴随着OGA和OGT的丧失,分别,表型和核型正常,并保留了多能性,尽管它们可能倾向于向某些细菌谱系分化。在通过中胚层诱导和内皮到造血转变进行造血分化时,我们发现OGA抑制加速了hiPSC对HSPCs的承诺,而O-GlcNAc稳态的破坏会影响其对红系谱系的承诺.来自所有组的分化的HSPC能够产生所有造血祖细胞,从而证实了它们的功能特征。总之,已建立的OGTi和OGAihiPSC的单细胞克隆为进一步剖析O-GlcNAcylation在血细胞发育中不同阶段和谱系的作用提供了有价值的平台.这些hiPSC中OGA和OGT的不完全敲除使它们容易受到额外的操纵,即,通过小分子,允许O-GlcNAcylation的分子动力学研究。
    Hematopoiesis continues throughout life to produce all types of blood cells from hematopoietic stem cells (HSCs). Metabolic state is a known regulator of HSC self-renewal and differentiation, but whether and how metabolic sensor O-GlcNAcylation, which can be modulated via an inhibition of its cycling enzymes O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT), contributes to hematopoiesis remains largely unknown. Herein, isogenic, single-cell clones of OGA-depleted (OGAi) and OGT-depleted (OGTi) human induced pluripotent stem cells (hiPSCs) were successfully generated from the master hiPSC line MUSIi012-A, which were reprogrammed from CD34+ hematopoietic stem/progenitor cells (HSPCs) containing epigenetic memory. The established OGAi and OGTi hiPSCs exhibiting an increase or decrease in cellular O-GlcNAcylation concomitant with their loss of OGA and OGT, respectively, appeared normal in phenotype and karyotype, and retained pluripotency, although they may favor differentiation toward certain germ lineages. Upon hematopoietic differentiation through mesoderm induction and endothelial-to-hematopoietic transition, we found that OGA inhibition accelerates hiPSC commitment toward HSPCs and that disruption of O-GlcNAc homeostasis affects their commitment toward erythroid lineage. The differentiated HSPCs from all groups were capable of giving rise to all hematopoietic progenitors, thus confirming their functional characteristics. Altogether, the established single-cell clones of OGTi and OGAi hiPSCs represent a valuable platform for further dissecting the roles of O-GlcNAcylation in blood cell development at various stages and lineages of blood cells. The incomplete knockout of OGA and OGT in these hiPSCs makes them susceptible to additional manipulation, i.e., by small molecules, allowing the molecular dynamics studies of O-GlcNAcylation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    研究人员试图产生可转移的氧载体以减轻红细胞供应短缺。使用干细胞如造血干细胞和祖细胞(HSPCs)体外产生红细胞,胚胎干细胞(ESC),和诱导多能干细胞(iPSCs)已显示出希望。具体来说,HSPCs的供应有限和ESCs的伦理问题使iPSCs成为体外RBC产生的最有希望的候选者.然而,研究人员在使用iPSCs生产可转染的RBC产品时遇到了一些重大挑战,如摘除和红细胞成熟。此外,事实证明,很难大规模制造这些产品。在这次审查中,我们提供了红细胞生成的简要概述,并研究了使用各种细胞来源在体外概括红细胞生成的努力。此外,我们探讨了目前的障碍和潜在的解决方案,旨在实现可在体外大规模生产可转染的红细胞。
    Researchers have attempted to generate transfusable oxygen carriers to mitigate RBC supply shortages. In vitro generation of RBCs using stem cells such as hematopoietic stem and progenitor cells (HSPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) has shown promise. Specifically, the limited supplies of HSPCs and ethical issues with ESCs make iPSCs the most promising candidate for in vitro RBC generation. However, researchers have encountered some major challenges when using iPSCs to produce transfusable RBC products, such as enucleation and RBC maturation. In addition, it has proven difficult to manufacture these products on a large scale. In this review, we provide a brief overview of erythropoiesis and examine endeavors to recapitulate erythropoiesis in vitro using various cell sources. Furthermore, we explore the current obstacles and potential solutions aimed at enabling the large-scale production of transfusable RBCs in vitro.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号