glia

胶质
  • 文章类型: Journal Article
    具有双标记的马赛克分析(MADM)是一种强大的遗传方法,通常用于谱系追踪和解开具有单细胞分辨率的候选基因的细胞自主和组织范围的作用。鉴于标签相对稀疏,根据一个人选择的19条MADM染色体中的哪一条,MADM方法代表了细胞形态分析的绝佳机会。各种MADM研究包括中枢神经系统(CNS)形态异常和表型的报告。任何候选基因的MADM都可以轻松地将形态学分析纳入实验工作流程。这里,我们描述了我们在最近的各种MADM研究过程中开发的形态细胞分析方法。本章将特别关注量化中枢神经系统内神经元和星形胶质细胞形态方面的方法,但是这些方法可以广泛应用于整个生物体中的任何MADM标记的细胞。我们将涵盖两个分析-体细胞体积和树突表征-体感皮层中锥体神经元的物理特征,和两个分析-体积和Sholl分析-星形胶质细胞形态。
    Mosaic Analysis with Double Markers (MADM) is a powerful genetic method typically used for lineage tracing and to disentangle cell autonomous and tissue-wide roles of candidate genes with single cell resolution. Given the relatively sparse labeling, depending on which of the 19 MADM chromosomes one chooses, the MADM approach represents the perfect opportunity for cell morphology analysis. Various MADM studies include reports of morphological anomalies and phenotypes in the central nervous system (CNS). MADM for any candidate gene can easily incorporate morphological analysis within the experimental workflow. Here, we describe the methods of morphological cell analysis which we developed in the course of diverse recent MADM studies. This chapter will specifically focus on methods to quantify aspects of the morphology of neurons and astrocytes within the CNS, but these methods can broadly be applied to any MADM-labeled cells throughout the entire organism. We will cover two analyses-soma volume and dendrite characterization-of physical characteristics of pyramidal neurons in the somatosensory cortex, and two analyses-volume and Sholl analysis-of astrocyte morphology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    阿尔茨海默病(AD)是大脑中的一种疾病,其特征是记忆逐渐减少,思想,以及执行简单任务的能力。AD预后不良,但尚未治愈。因此,需要新的模型来研究其发病机制和治疗策略是显而易见的,因为大脑在受伤和神经退行性疾病后恢复不佳,既不能取代死亡的神经元,也不能恢复靶结构。最近,间充质干细胞(MSCs),特别是那些来自人类嗅觉粘膜的称为嗅外MSCs(OE-MSCs),由于其终生的再生效力和容易的可及性,已成为模拟AD和开发该疾病疗法的潜在途径。这篇综述提供了关于分离OE-MSCs的现有文献的全面总结,并探讨了它们是否可以作为研究AD发病机制的可靠模型。它还探讨了健康的个体来源的OE-MSC是否可以成为该疾病的治疗剂。尽管在AD的建模和开发治疗方面是一个有前途的工具,一些重大问题仍然存在,审查中也讨论了这些问题。
    Alzheimer\'s disease (AD) is a condition in the brain that is marked by a gradual and ongoing reduction in memory, thought, and the ability to perform simple tasks. AD has a poor prognosis but no cure yet. Therefore, the need for novel models to study its pathogenesis and therapeutic strategies is evident, as the brain poorly recovers after injury and neurodegenerative diseases and can neither replace dead neurons nor reinnervate target structures. Recently, mesenchymal stem cells (MSCs), particularly those from the human olfactory mucous membrane referred to as the olfactory ecto-MSCs (OE-MSCs), have emerged as a potential avenue to explore in modeling AD and developing therapeutics for the disease due to their lifelong regeneration potency and facile accessibility. This review provides a comprehensive summary of the current literature on isolating OE-MSCs and delves into whether they could be reliable models for studying AD pathogenesis. It also explores whether healthy individual-derived OE-MSCs could be therapeutic agents for the disease. Despite being a promising tool in modeling and developing therapies for AD, some significant issues remain, which are also discussed in the review.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    精神分裂症患者表现出髓鞘形成模式中断,少突胶质细胞分布改变,少突胶质细胞形态异常。精神分裂症与参与少突胶质细胞功能和髓磷脂产生的多种基因的失调有关。在某些精神分裂症人群中观察到髓鞘形成相关基因的单核苷酸多态性(SNP)和罕见突变,代表潜在的遗传风险因素。髓鞘形成相关RNA和蛋白质的下调,特别是在额叶和边缘区域,在多项研究中始终与该疾病相关。这些发现支持以下观点:髓鞘形成的中断可能会导致精神分裂症患者的认知和行为障碍。尽管还需要进一步的因果关系证据。
    Schizophrenic individuals display disrupted myelination patterns, altered oligodendrocyte distribution, and abnormal oligodendrocyte morphology. Schizophrenia is linked with dysregulation of a variety of genes involved in oligodendrocyte function and myelin production. Single-nucleotide polymorphisms (SNPs) and rare mutations in myelination-related genes are observed in certain schizophrenic populations, representing potential genetic risk factors. Downregulation of myelination-related RNAs and proteins, particularly in frontal and limbic regions, is consistently associated with the disorder across multiple studies. These findings support the notion that disruptions in myelination may contribute to the cognitive and behavioral impairments experienced in schizophrenia, although further evidence of causation is needed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    富含蛋白质的内含物的异质性及其在神经变性中的意义知之甚少。标准患者衍生的iPSC模型既不能重复也不能在合理的时间范围内形成内含物。这里,我们利用piggyBac或靶向转基因快速诱导中枢神经系统细胞,在脑样水平上表达聚集倾向蛋白,开发了可筛选的iPSC“包涵体病”模型。包涵体及其对细胞存活的影响在单包涵体分辨率下是可跟踪的。示例性皮质神经元α-突触核蛋白包涵体病模型通过α-突触核蛋白突变体形式的转基因表达或与原纤维的外源接种来工程改造。我们确定了多个包含类,包括神经保护性p62阳性内含物与动态和神经毒性富含脂质的内含物,两者都在患者大脑中发现。这些包涵亚型之间的融合事件改变了神经元存活。蛋白质组规模的α-突触核蛋白遗传和物理相互作用筛选确定了候选RNA加工和肌动蛋白细胞骨架调节蛋白,如RhoA,其螯合到内含物中可以增强毒性。这些可处理的CNS模型应被证明可用于蛋白质病的功能基因组分析和药物开发。
    The heterogeneity of protein-rich inclusions and its significance in neurodegeneration is poorly understood. Standard patient-derived iPSC models develop inclusions neither reproducibly nor in a reasonable time frame. Here, we developed screenable iPSC \"inclusionopathy\" models utilizing piggyBac or targeted transgenes to rapidly induce CNS cells that express aggregation-prone proteins at brain-like levels. Inclusions and their effects on cell survival were trackable at single-inclusion resolution. Exemplar cortical neuron α-synuclein inclusionopathy models were engineered through transgenic expression of α-synuclein mutant forms or exogenous seeding with fibrils. We identified multiple inclusion classes, including neuroprotective p62-positive inclusions versus dynamic and neurotoxic lipid-rich inclusions, both identified in patient brains. Fusion events between these inclusion subtypes altered neuronal survival. Proteome-scale α-synuclein genetic- and physical-interaction screens pinpointed candidate RNA-processing and actin-cytoskeleton-modulator proteins like RhoA whose sequestration into inclusions could enhance toxicity. These tractable CNS models should prove useful in functional genomic analysis and drug development for proteinopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    威尔逊病(WD)是一种常染色体隐性遗传,是由ATP7B基因的致病变异引起的。它们是细胞中铜运输受损的原因,抑制铜与空脂蓝蛋白的结合,和胆汁排泄。这导致铜在组织中的积累。铜在CNS中的积累导致WD的神经和精神症状。WD中铜代谢异常与铁代谢受损有关。这两种元素都是氧化还原活性的,可能有助于神经病理学。长期以来,人们一直认为在实质细胞中,星形胶质细胞对大脑中铜和铁稳态的影响最大。毛细血管内皮细胞通过星形胶质细胞末端腿与神经纤维分离,将星形胶质细胞置于理想的位置,以调节铁和铜向其他脑细胞的运输,并在金属突破血脑屏障时保护它们。星形胶质细胞负责,除其他外,维持细胞外离子稳态,调节突触传递和可塑性,获得代谢物,保护大脑免受氧化应激和毒素的侵害。然而,过量的铜和/或铁导致神经病理学研究中观察到的星形胶质细胞数量及其形态变化的增加,以及铜/铁储存功能的丧失,导致大分子过氧化和神经元通过细胞凋亡而丧失,自噬,或角化/角化。解释神经胶质在铜和铁诱导的WD神经变性中的可能作用的分子机制从帕金森病和阿尔茨海默病的神经病理学研究中得到了很大的理解。了解神经胶质参与神经保护/神经毒性的机制对于解释WD中神经元死亡的病理机制很重要,在未来,也许是为了开发更有效的诊断/治疗方法。
    Wilson\'s disease (WD) is inherited in an autosomal recessive manner and is caused by pathogenic variants of the ATP7B gene, which are responsible for impaired copper transport in the cell, inhibition of copper binding to apoceruloplasmin, and biliary excretion. This leads to the accumulation of copper in the tissues. Copper accumulation in the CNS leads to the neurological and psychiatric symptoms of WD. Abnormalities of copper metabolism in WD are associated with impaired iron metabolism. Both of these elements are redox active and may contribute to neuropathology. It has long been assumed that among parenchymal cells, astrocytes have the greatest impact on copper and iron homeostasis in the brain. Capillary endothelial cells are separated from the neuropil by astrocyte terminal legs, putting astrocytes in an ideal position to regulate the transport of iron and copper to other brain cells and protect them if metals breach the blood-brain barrier. Astrocytes are responsible for, among other things, maintaining extracellular ion homeostasis, modulating synaptic transmission and plasticity, obtaining metabolites, and protecting the brain against oxidative stress and toxins. However, excess copper and/or iron causes an increase in the number of astrocytes and their morphological changes observed in neuropathological studies, as well as a loss of the copper/iron storage function leading to macromolecule peroxidation and neuronal loss through apoptosis, autophagy, or cuproptosis/ferroptosis. The molecular mechanisms explaining the possible role of glia in copper- and iron-induced neurodegeneration in WD are largely understood from studies of neuropathology in Parkinson\'s disease and Alzheimer\'s disease. Understanding the mechanisms of glial involvement in neuroprotection/neurotoxicity is important for explaining the pathomechanisms of neuronal death in WD and, in the future, perhaps for developing more effective diagnostic/treatment methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在癫痫动物模型中,颅脑手术通常需要植入电极以进行脑电图(EEG)记录。然而,电极植入物可导致神经胶质细胞的活化并干扰生理神经元活动。在这项研究中,我们评估了硬膜外电极植入物对毛果芸香碱颞叶癫痫小鼠模型的影响。术后1周和3周通过细胞因子定量评估脑神经炎症,免疫组织化学,和西方印迹。此外,我们研究了毛果芸香碱的作用,手术后两周给药,小鼠死亡率。报道的结果表明,植入小鼠患有神经炎症,以促炎细胞因子的早期释放为特征,小胶质细胞激活,以及随后的星形胶质增生,三周后仍然存在。值得注意的是,接受电极植入物的小鼠在手术后2周注射毛果芸香碱后显示出更高的死亡率。此外,对植入小鼠记录的脑电图的分析揭示了大量的单尖峰,表明癫痫发作的易感性可能增加。总之,在小鼠中植入硬膜外电极会促进神经炎症,从而降低毛果芸香碱的癫痫发作阈值并增加死亡率。考虑到电极植入物引起的持续性神经炎症的改进方案将解决细化和减少,在科学研究中伦理使用动物的两个3Rs原则。
    In animal models of epilepsy, cranial surgery is often required to implant electrodes for electroencephalography (EEG) recording. However, electrode implants can lead to the activation of glial cells and interfere with physiological neuronal activity. In this study, we evaluated the impact of epidural electrode implants in the pilocarpine mouse model of temporal lobe epilepsy. Brain neuroinflammation was assessed 1 and 3 weeks after surgery by cytokines quantification, immunohistochemistry, and western blotting. Moreover, we investigated the effect of pilocarpine, administered two weeks after surgery, on mice mortality rate. The reported results indicate that implanted mice suffer from neuroinflammation, characterized by an early release of pro-inflammatory cytokines, microglia activation, and subsequent astrogliosis, which persists after three weeks. Notably, mice subjected to electrode implants displayed a higher mortality rate following pilocarpine injection 2 weeks after the surgery. Moreover, the analysis of EEGs recorded from implanted mice revealed a high number of single spikes, indicating a possible increased susceptibility to seizures. In conclusion, epidural electrode implant in mice promotes neuroinflammation that could lower the seizure thresholds to pilocarpine and increase the death rate. An improved protocol considering the persistent neuroinflammation induced by electrode implants will address refinement and reduction, two of the 3Rs principles for the ethical use of animals in scientific research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:周围神经损伤后,各种非神经元细胞被激活,触发周围和中枢神经系统的积累,并与神经元沟通。证据表明,神经元和非神经元细胞通讯是神经性疼痛的关键机制;然而,其导致神经性口面部疼痛发展的详细机制尚不清楚。
    结论:三叉神经节(TG)中的神经元和非神经元细胞通讯被认为会导致三叉神经损伤后的神经元过度激活,导致神经性口面部疼痛。三叉神经损伤激活和积累非神经元细胞,如TG和小胶质细胞中的卫星细胞和巨噬细胞,星形胶质细胞,三叉神经脊髓尾核下(Vc)和上颈脊髓(C1-C2)中的少突胶质细胞。这些非神经元细胞释放各种分子,导致TG的过度激活,Vc,和C1-C2伤害性神经元。这些伤害性神经元释放增强非神经元细胞的分子。这种神经元和非神经元细胞串扰导致TG中伤害性神经元的过度激活,Vc,和C1-C2。这里,我们讨论了以前和最近的有关神经元和非神经元细胞通讯及其在神经性口面部疼痛发展中的作用的数据。
    结论:以前和最近的数据表明,TG中的神经元和非神经元细胞通讯,Vc,C1-C2是引起与三叉神经损伤相关的神经性口面部疼痛的关键机制。
    BACKGROUND: Following peripheral nerve damage, various non-neuronal cells are activated, triggering accumulation in the peripheral and central nervous systems, and communicate with neurons. Evidence suggest that neuronal and non-neuronal cell communication is a critical mechanism of neuropathic pain; however, its detailed mechanisms in contributing to neuropathic orofacial pain development remain unclear.
    CONCLUSIONS: Neuronal and non-neuronal cell communication in the trigeminal ganglion (TG) is believed to cause neuronal hyperactivation following trigeminal nerve damage, resulting in neuropathic orofacial pain. Trigeminal nerve damage activates and accumulates non-neuronal cells, such as satellite cells and macrophages in the TG and microglia, astrocytes, and oligodendrocytes in the trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2). These non-neuronal cells release various molecules, contributing to hyperactivation of TG, Vc, and C1-C2 nociceptive neurons. These nociceptive neurons release molecules that enhance non-neuronal cells. This neuron and non-neuronal cell crosstalk causes hyperactivation of nociceptive neurons in the TG, Vc, and C1-C2. Here, we addressed previous and recent data on the contribution of neuronal and non-neuronal cell communication and its involvement in neuropathic orofacial pain development.
    CONCLUSIONS: Previous and recent data suggest that neuronal and non-neuronal cell communication in the TG, Vc, and C1-C2 is a key mechanism that causes neuropathic orofacial pain associated with trigeminal nerve damage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多细胞生物由具有不同蛋白质组的特定细胞类型组成。虽然单细胞转录组分析的最新进展揭示了mRNA的差异表达,翻译谱中的细胞多样性仍未得到充分研究。通过在果蝇大脑中遗传定义的细胞中执行RNA-seq和Ribo-seq,我们在这里揭示了大量的转录后调控,在蛋白质表达水平上增加了细胞类型的区别。具体来说,我们发现蛋白质的翻译效率是神经元功能的基础,如离子通道和神经递质受体,神经胶质细胞维持在较低水平,导致它们在神经元中的优先翻译。值得注意的是,这些mRNA上核糖体足迹的分布对神经胶质中的5个领导者表现出明显的偏见。使用转基因报告菌株,我们提供的证据表明,5\'前导序列中的小上游开放阅读框赋予胶质细胞选择性翻译抑制。总的来说,这些发现强调了翻译调控在形成细胞类型区分的蛋白质组学中的深远影响,并为驱动细胞类型多样性的分子机制提供了新的见解.
    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5\' leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5\' leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    帕金森病(PD)有两个主要的病理标志,神经元路易病理中黑色多巴胺神经元的丢失和synuclein(Syn)的蛋白质聚集。这两个共存的特征表明,在PD中,Syn聚集与神经元变性的基础机制之间存在因果关系。增加的水平和翻译后修饰都可以促进神经元中Syn的病理性聚集的形成。最近的研究表明,该蛋白也由大脑和外周组织中多种类型的非神经元细胞表达,提示蛋白质在非神经元致病触发因素中的其他作用和潜在的多样性。重要的是要确定(1)在PD中不同脑细胞中触发小鼠Syn从生物学形式转变为病理学形式的阈值水平;(2)与PD有关的每种细胞类型中的病理蛋白Syn的主要形式和相关的翻译后修饰;(3)与PD中病理Syn影响的细胞类型相关的生物过程。这篇综述整合了这些方面,并推测了潜在的病理机制及其对PD患者大脑中神经元和非神经元的影响。
    Parkinson\'s disease (PD) has two main pathological hallmarks, the loss of nigral dopamine neurons and the proteinaceous aggregations of ⍺-synuclein (⍺Syn) in neuronal Lewy pathology. These two co-existing features suggest a causative association between ⍺Syn aggregation and the underpinning mechanism of neuronal degeneration in PD. Both increased levels and post-translational modifications of ⍺Syn can contribute to the formation of pathological aggregations of ⍺Syn in neurons. Recent studies have shown that the protein is also expressed by multiple types of non-neuronal cells in the brain and peripheral tissues, suggesting additional roles of the protein and potential diversity in non-neuronal pathogenic triggers. It is important to determine (1) the threshold levels triggering ⍺Syn to convert from a biological to a pathologic form in different brain cells in PD; (2) the dominant form of pathologic ⍺Syn and the associated post-translational modification of the protein in each cell type involved in PD; and (3) the cell type associated biological processes impacted by pathologic ⍺Syn in PD. This review integrates these aspects and speculates on potential pathological mechanisms and their impact on neuronal and non-neuronal ⍺Syn in the brains of patients with PD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号