gene essentiality

基因的重要性
  • 文章类型: Journal Article
    深度学习(DL)已显示出在癌症研究中提供大量RNA-seq数据的强大表示的潜力。然而,关于DL方法的设计选择对学习表示的性能的影响没有共识,包括模型架构,训练方法和各种超参数。为了解决这个问题,我们使用TCGA和DepMap泛癌症数据集评估了DL表征学习方法的各种设计选择的性能,并评估了它们对生存率和基因重要性预测的预测能力.我们证明,在生存预测任务上,与更复杂的模型相比,基线方法实现了可比或更优越的性能。DL表示方法,然而,是预测细胞系基因重要性的最有效方法。我们证明了自动编码器(AE)通过掩蔽和多头训练等技术得到了持续改进。我们的结果表明,DL表示和预训练的影响高度依赖于任务和架构,强调需要采用严格的评估准则。这些稳健评估指南是在向研究界提供的管道中实施的。
    Deep learning (DL) has shown potential to provide powerful representations of bulk RNA-seq data in cancer research. However, there is no consensus regarding the impact of design choices of DL approaches on the performance of the learned representation, including the model architecture, the training methodology and the various hyperparameters. To address this problem, we evaluate the performance of various design choices of DL representation learning methods using TCGA and DepMap pan-cancer datasets and assess their predictive power for survival and gene essentiality predictions. We demonstrate that baseline methods achieve comparable or superior performance compared to more complex models on survival predictions tasks. DL representation methods, however, are the most efficient to predict the gene essentiality of cell lines. We show that auto-encoders (AE) are consistently improved by techniques such as masking and multi-head training. Our results suggest that the impact of DL representations and of pretraining are highly task- and architecture-dependent, highlighting the need for adopting rigorous evaluation guidelines. These guidelines for robust evaluation are implemented in a pipeline made available to the research community.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结核分枝杆菌是结核病(TB)的主要病原体,结核病是一种古老而广泛的全球传染病,2021年有160万人丧生。抗生素耐药性(AMR)几十年来一直是一个持续的危机;2019年有495万人死亡与抗生素耐药性有关。虽然AMR是一个多方面的问题,药物发现是解决方案的紧迫部分,并且处于现代研究的最前沿。毫无疑问,高通量基因沉默技术的发展改变了结核病药物发现的前景,该技术能够对基因组中的每个基因进行询问,以及它们对健身的相对贡献,毒力,和AMR。该领域的最新进展是CRISPR干扰(CRISPRi)。该技术在抗微生物药敏试验(AST)中的应用是基础科学正在进行的研究的主题。CRISPRi技术可与高通量SPOT培养生长抑制试验(HT-SPOTi)结合使用,以快速评估和评估基因的重要性,包括非必需,有条件的必要(通过使用适当的培养条件),和必要的基因。此外,HT-SPOTi方法可以发展药物敏感性和耐药性。该技术对于合理设计基于靶标的抑制剂并希望验证其新化合物对所提出靶标的抗生素作用的主要机制的药物发现小组进一步有用。
    Mycobacterium tuberculosis is the main causative agent of tuberculosis (TB)-an ancient yet widespread global infectious disease to which 1.6 million people lost their lives in 2021. Antimicrobial resistance (AMR) has been an ongoing crisis for decades; 4.95 million deaths were associated with antibiotic resistance in 2019. While AMR is a multi-faceted problem, drug discovery is an urgent part of the solution and is at the forefront of modern research.The landscape of drug discovery for TB has undoubtedly been transformed by the development of high-throughput gene-silencing techniques that enable interrogation of every gene in the genome, and their relative contribution to fitness, virulence, and AMR. A recent advance in this area is CRISPR interference (CRISPRi). The application of this technique to antimicrobial susceptibility testing (AST) is the subject of ongoing research in basic science.CRISPRi technology can be used in conjunction with the high-throughput SPOT-culture growth inhibition assay (HT-SPOTi) to rapidly evaluate and assess gene essentiality including non-essential, conditionally essential (by using appropriate culture conditions), and essential genes. In addition, the HT-SPOTi method can develop drug susceptibility and drug resistance profiles.This technology is further useful for drug discovery groups who have designed target-based inhibitors rationally and wish to validate the primary mechanisms of their novel compounds\' antibiotic action against the proposed target.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CHCHD4(MIA40)是线粒体二硫化物中继系统(DRS)的中心组件,是必不可少的,在进化上是保守的。以前,我们已经证明CHCHD4是肿瘤细胞生长的关键调节因子。这里,我们使用全基因组CRISPR/Cas9和SILAC蛋白质组学分析来描述CHCHCHD4在癌症中的重要性机制.我们确定了与肿瘤细胞中CHCHD4重要性相关的常见必需基因/蛋白质的简短列表,其中包括已知DRS底物的复合物I的亚基,和参与关键代谢途径的基因/蛋白质。我们的研究强调了CHCHD4调节的肿瘤细胞生长所必需的一系列核编码线粒体基因。
    CHCHD4 (MIA40) is central to the functions of the mitochondrial disulfide relay system (DRS). CHCHD4 is essential and evolutionarily conserved. Previously, we have shown CHCHD4 to be a critical regulator of tumour cell growth. Here, we use integrated analysis of our genome-wide CRISPR/Cas9 and SILAC proteomic screening data to delineate mechanisms of CHCHD4 essentiality in cancer. We identify a shortlist of common essential genes/proteins regulated by CHCHD4, including subunits of complex I that are known DRS substrates, and genes/proteins involved in key metabolic pathways. Our study highlights a range of CHCHD4-regulated nuclear encoded mitochondrial genes/proteins essential for tumour cell growth.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    丙酮丁醇梭菌是一种溶剂,厌氧,革兰氏阳性细菌,通常被认为是研究丙酮-丁醇-乙醇发酵的模型生物。可持续生产这些化学物质并对环境产生最小影响的需求重新引起了对这种细菌研究的兴趣。最近开发的高效遗传工具可以更好地了解这种微生物的生理学,旨在提高其发酵能力。关于基因必要性的知识将指导未来的基因编辑策略,并支持对这种细菌关键细胞功能的理解。在这项工作中,我们应用转座子插入位点测序方法,产生了包含数百万独立突变体的大型突变体文库,使我们能够鉴定出体外发育所需的418个必需基因的核心组.这项工作提供的数据将指导对这种重要的生物催化剂的未来研究,这将成为社区的宝贵资源。
    目的:丙酮丁醇梭菌是合成有价值的化合物如三碳和四碳醇的主要候选物。它能够将碳水化合物转化为丙酮的混合物,丁醇,和乙醇以及其他在基因工程中感兴趣的化学物质使其成为用于木质纤维素衍生的糖混合物的价值化的有利生物体。因为,遗传优化取决于准确的基因功能分配提供的基本见解,基因必要性分析是非常感兴趣的,因为它可以揭示许多基因的功能,这些基因的功能仍有待证实。在这项研究中获得的数据对于旨在开发丙酮丁醇梭菌作为生产感兴趣的化学品的平台生物的研究社区将具有重要价值。
    Clostridium acetobutylicum is a solventogenic, anaerobic, gram-positive bacterium that is commonly considered the model organism for studying acetone-butanol-ethanol fermentation. The need to produce these chemicals sustainably and with a minimal impact on the environment has revived the interest in research on this bacterium. The recent development of efficient genetic tools allows to better understand the physiology of this micro-organism, aiming at improving its fermentation capacities. Knowledge about gene essentiality would guide the future genetic editing strategies and support the understanding of crucial cellular functions in this bacterium. In this work, we applied a transposon insertion site sequencing method to generate large mutant libraries containing millions of independent mutants that allowed us to identify a core group of 418 essential genes needed for in vitro development. Future research on this significant biocatalyst will be guided by the data provided in this work, which will serve as a valuable resource for the community.
    OBJECTIVE: Clostridium acetobutylicum is a leading candidate to synthesize valuable compounds like three and four carbons alcohols. Its ability to convert carbohydrates into a mixture of acetone, butanol, and ethanol as well as other chemicals of interest upon genetic engineering makes it an advantageous organism for the valorization of lignocellulose-derived sugar mixtures. Since, genetic optimization depends on the fundamental insights supplied by accurate gene function assignment, gene essentiality analysis is of great interest as it can shed light on the function of many genes whose functions are still to be confirmed. The data obtained in this study will be of great value for the research community aiming to develop C. acetobutylicum as a platform organism for the production of chemicals of interest.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    关键基因的鉴定是系统和合成生物学的关键挑战,特别是用于将原料转化为有价值的产物的工程代谢途径。在基因组规模上评估基因的重要性需要大量且昂贵的敲除菌株的生长测定。在这里,我们描述了一种使用二进制分类算法预测代谢基因重要性的策略。该方法结合了来自基因组尺度代谢模型的元素,有向图,和机器学习成预测模型,可以在小的敲除数据上进行训练。我们使用最完整的大肠杆菌代谢模型和各种机器学习算法进行二进制分类来证明这种方法的有效性。
    The identification of essential genes is a key challenge in systems and synthetic biology, particularly for engineering metabolic pathways that convert feedstocks into valuable products. Assessment of gene essentiality at a genome scale requires large and costly growth assays of knockout strains. Here we describe a strategy to predict the essentiality of metabolic genes using binary classification algorithms. The approach combines elements from genome-scale metabolic models, directed graphs, and machine learning into a predictive model that can be trained on small knockout data. We demonstrate the efficacy of this approach using the most complete metabolic model of Escherichia coli and various machine learning algorithms for binary classification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    聚集的定期间隔短回文重复(CRISPR)/Cas9系统使得基因组工程和转录调控的快速进展成为可能。具体来说,CRISPR干扰(CRISPRi)系统已用于以高通量方式系统地研究微生物菌株的基因功能。该方法涉及使用已经用靶向单个基因的失活Cas9(dCas9)和单向导RNA(sgRNA)文库转化的细胞进行生长谱分析。每个基因的适应度评分是通过测量细胞生长过程中单个sgRNA的丰度来计算的,代表基因的重要性。在这一章中,描述了使用CRISPRi在全基因组尺度上进行功能遗传筛选的过程,从sgRNA文库的合成开始,CRISPRI图书馆的建设,并通过生长谱分析鉴定必需基因。共生细菌拟杆菌属细菌用于实施该方案。该方法有望适用于更广泛的微生物,以探索微生物的新表型特征。
    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system has enabled rapid advances in genomic engineering and transcriptional regulation. Specifically, CRISPR interference (CRISPRi) system has been used to systematically investigate the gene functions of microbial strains in a high-throughput manner. This method involves growth profiling using cells that have been transformed with the deactivated Cas9 (dCas9) and single-guide RNA (sgRNA) libraries that target individual genes. The fitness scores of each gene are calculated by measuring the abundance of individual sgRNAs during cell growth and represent gene essentiality. In this chapter, a process is described for functional genetic screening using CRISPRi at the whole-genome scale, starting from the synthesis of sgRNA libraries, construction of CRISPRi libraries, and identification of essential genes through growth profiling. The commensal bacterium Bacteroides thetaiotaomicron was used to implement the protocol. This method is expected to be applicable to a broader range of microorganisms to explore the novel phenotypic characteristics of microorganisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基因编辑的进展,特别是CRISPR干扰(CRISPRi),已经使必需的细胞机制耗尽,以研究对细菌生理学的下游影响。这里,我们描述了一个有序的大肠杆菌CRISPRi集合的构建,设计用于通过诱导具有催化活性的Cas9来敲除356个必需基因的表达,该Cas9包含在接合质粒pFD152上。该移动CRISPRi文库可以缀合到其他有序的遗传文库中,以评估必需基因敲除与非必需基因缺失的组合效应。作为概念的证明,我们用两个互补杂交来探测细胞包膜合成:(1)每个CRISPRi敲低菌株中的Lpp缺失和(2)Keio集合中的lolA敲低质粒。这些实验揭示了所探测的基本表型的许多显著的遗传相互作用,特别是,显示抑制所讨论基因座的相互作用。
    Advances in gene editing, in particular CRISPR interference (CRISPRi), have enabled depletion of essential cellular machinery to study the downstream effects on bacterial physiology. Here, we describe the construction of an ordered E. coli CRISPRi collection, designed to knock down the expression of 356 essential genes with the induction of a catalytically inactive Cas9, harbored on the conjugative plasmid pFD152. This mobile CRISPRi library can be conjugated into other ordered genetic libraries to assess combined effects of essential gene knockdowns with non-essential gene deletions. As proof of concept, we probed cell envelope synthesis with two complementary crosses: (1) an Lpp deletion into every CRISPRi knockdown strain and (2) the lolA knockdown plasmid into the Keio collection. These experiments revealed a number of notable genetic interactions for the essential phenotype probed and, in particular, showed suppressing interactions for the loci in question.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本文概述了微生物宿主选择,合成生物学,基因组注释,代谢建模,和预测开发微生物底盘的基因必要性的计算方法。本文重点介绍了乳酸菌(LAB)作为微生物底盘以及LAB基因组的基因组注释策略。作为一个案例研究,乳酸乳球菌的选择是基于其完善的治疗应用,例如益生菌和口服疫苗开发。在这篇文章中,我们已经描述了乳酸菌基因组注释的策略。这些策略还提供了对简化基因组减少的见解,而不损害底盘的功能和最小基因组底盘开发的潜力。这些见解强调了使用具有最少基因组的流线型微生物底盘开发高效和可持续合成生物学系统的潜力。
    This article provides an overview of microbial host selection, synthetic biology, genome annotation, metabolic modeling, and computational methods for predicting gene essentiality for developing a microbial chassis. This article focuses on lactic acid bacteria (LAB) as a microbial chassis and strategies for genome annotation of the LAB genome. As a case study, Lactococcus lactis is chosen based on its well-established therapeutic applications such as probiotics and oral vaccine development. In this article, we have delineated the strategies for genome annotations of lactic acid bacteria. These strategies also provide insights into streamlining genome reduction without compromising the functionality of the chassis and the potential for minimal genome chassis development. These insights underscore the potential for the development of efficient and sustainable synthetic biology systems using streamlined microbial chassis with minimal genomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    耳念珠菌是一种新兴的人类病原体,与抗真菌药物耐药性和医院念珠菌病暴发有关。在这项工作中,我们提出了iRV973,第一个重建的基因组尺度代谢模型(GSMM)。该模型是手动策划和实验验证的,能够准确预测C.auris的特定生长速率以及几种唯一碳源和氮源的利用。将该模型与其他致病性念珠菌物种的GSMM进行比较,并将其用作跨物种比较的平台。旨在分析其代谢特征,并鉴定最常见的致病性念珠菌的潜在新抗真菌靶标。从新陈代谢的角度来看,与其他念珠菌相比,我们能够在C.auris中鉴定出独特的酶,这可能代表独特的代谢特征。此外,50种酶被确定为潜在的药物靶标,鉴于它们在模仿人类血清的条件下的重要性,分析了所有四种不同念珠菌模型的共同点。这些酶代表了抗真菌治疗的有趣药物靶标,有些是临床实践中使用的抗真菌药物的已知目标,但是其他新的潜在药物靶标也在念珠菌物种中没有任何人类同源物或药物关联的情况下脱颖而出。
    Candida auris is an emerging human pathogen, associated with antifungal drug resistance and hospital candidiasis outbreaks. In this work, we present iRV973, the first reconstructed Genome-scale metabolic model (GSMM) for C. auris. The model was manually curated and experimentally validated, being able to accurately predict the specific growth rate of C. auris and the utilization of several sole carbon and nitrogen sources. The model was compared to GSMMs available for other pathogenic Candida species and exploited as a platform for cross-species comparison, aiming the analysis of their metabolic features and the identification of potential new antifungal targets common to the most prevalent pathogenic Candida species. From a metabolic point of view, we were able to identify unique enzymes in C. auris in comparison with other Candida species, which may represent unique metabolic features. Additionally, 50 enzymes were identified as potential drug targets, given their essentiality in conditions mimicking human serum, common to all four different Candida models analysed. These enzymes represent interesting drug targets for antifungal therapy, including some known targets of antifungal agents used in clinical practice, but also new potential drug targets without any human homolog or drug association in Candida species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    专注于选择动力学的微生物基因组学研究通常使用少量的远处基因组。因此,他们只能分析在物种差异过程中固定下来的突变。然而,一些物种的数千个基因组现在可以在公共数据库中找到,得益于高通量测序。这些数据提供了一个物种内分离的多态性的更完整的图片,提供对塑造物种最近进化的过程的独特见解。在这项研究中,我们提出了GLASS(基因水平氨基酸评分移位),基于氨基酸变化的预测效应的选择测试。通过将基因中观察到的突变效应的分布与没有选择的情况下的期望值进行比较,GLASS可以量化选择的强度。我们将GLASS应用于60,472个大肠杆菌菌株的数据集,并以此来重新审视关于重要性与表达水平在蛋白质进化速率中的作用的长期争论。我们发现选择具有对比的短期和长期动态,必需基因在短期内受到强大的纯化选择,而表达水平决定了基因长期进化的速度。GLASS还发现了特定转录因子中失活突变的过度表现,如外排泵阻遏物,这与抗生素抗性的选择是一致的。这些基因失活的多态性不能达到固定,表明短期健身收益和长期反选择之间的另一个对比。
    Microbial genomics studies focusing on the dynamics of selection have often used a small number of distant genomes. As a result, they could only analyze mutations that had become fixed during the divergence between species. However, thousands of genomes of some species are now available in public databases, thanks to high-throughput sequencing. These data provide a more complete picture of the polymorphisms segregating within a species, offering a unique insight into the processes that shape the recent evolution of a species. In this study, we present GLASS (Gene-Level Amino-acid Score Shift), a selection test that is based on the predicted effects of amino acid changes. By comparing the distribution of effects of mutations observed in a gene to the expectation in the absence of selection, GLASS can quantify the intensity of selection. We applied GLASS to a dataset of 60,472 Escherichia coli strains and used this to reexamine the longstanding debate about the role of essentiality versus expression level in the rate of protein evolution. We found that selection has contrasting short-term and long-term dynamics, with essential genes being subject to strong purifying selection in the short term, while expression level determines the rate of gene evolution in the long term. GLASS also found an overrepresentation of inactivating mutations in specific transcription factors, such as efflux pump repressors, which is consistent with selection for antibiotic resistance. These gene-inactivating polymorphisms do not reach fixation, suggesting another contrast between short-term fitness gains and long-term counterselection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号