clock genes

时钟基因
  • 文章类型: Journal Article
    众所周知,夜光会产生各种各样的行为结果,包括促进焦虑,抑郁症,多动症,不正常的社交能力,学习和记忆缺陷。不幸的是,我们都生活在一个24小时的社会中,人们在夜班工作中暴露于夜间照明或光污染-需要全天候的紧急服务-以及建筑物和路灯,使夜间光照几乎不可避免。此外,夜间屏幕时间(电视和智能设备)的增加也导致睡眠和行为障碍恶化。使这些因素更加复杂的是,与年幼的儿童和成人相比,青少年倾向于“夜猫子”,并且更喜欢晚上的时间型。所以这些青少年将有更高的可能性被暴露在晚上的光。更糟糕的是,早上8点或更早的高中开学时间普遍存在——这是过早的开学时间的组合,在夜间曝光,偏爱晚上的时间型是减少和减少睡眠的秘诀,这可能导致该人群对行为问题的易感性增加。因此,这个迷你评论将显示,使用人类和啮齿动物模型研究,夜光如何影响行为结果和应激反应,将光信号和昼夜节律定时系统连接到下丘脑-垂体肾上腺轴。此外,这项审查还将表明,青少年更有可能表现出异常的行为,以响应晚上的光,由于在这段时间内的发育和激素调节的变化,以及讨论有助于减轻这些负面影响的潜在干预措施。
    Light-at-night is known to produce a wide variety of behavioral outcomes including promoting anxiety, depression, hyperactivity, abnormal sociability, and learning and memory deficits. Unfortunately, we all live in a 24-h society where people are exposed to light-at-night or light pollution through night-shift work - the need for all-hours emergency services - as well as building and street-lights, making light-at-night exposure practically unavoidable. Additionally, the increase in screentime (tvs and smart devices) during the night also contributes to poorer sleep and behavioral impairments. Compounding these factors is the fact that adolescents tend to be \"night owls\" and prefer an evening chronotype compared to younger children and adults, so these teenagers will have a higher likelihood of being exposed to light-at-night. Making matters worse is the prevalence of high-school start times of 8 am or earlier - a combination of too early school start times, light exposure during the night, and preference for evening chronotypes is a recipe for reduced and poorer sleep, which can contribute to increased susceptibility for behavioral issues for this population. As such, this mini-review will show, using both human and rodent model studies, how light-at-night affects behavioral outcomes and stress responses, connecting photic signaling and the circadian timing system to the hypothalamic-pituitary adrenal axis. Additionally, this review will also demonstrate that adolescents are more likely to exhibit abnormal behavior in response to light-at-night due to changes in development and hormone regulation during this time period, as well as discuss potential interventions that can help mitigate these negative effects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: The aim of this study was to investigate the influence of mechanical strain on clock gene function in periodontal ligament (PDL) cells. Furthermore, we wanted to analyze whether effects induced by mechanical stress vary in relation to the circadian rhythm.
    METHODS: Human PDL fibroblasts were synchronized in their circadian rhythm with dexamethasone and stretched over 24 h. Unstretched cells served as controls. Gene expression of the core clock genes were analyzed at 4 h intervals by quantitative real-time polymerase chain reaction (qRT-PCR). Time points 0 h (group SI1) and 12 h (group SI2) after synchronization served as starting points of a 4 h force application period. Collagen-1α (COL-1α/Col-1α), interleukin-1β (IL1-β), and runt-related transcription factor 2 (RUNX2/Runx2) were assessed by qRT-PCR and enzyme-linked immunosorbent assay (ELISA) after 2 and 4 h. Statistical analysis comprised one-way analysis of variance (ANOVA) and post hoc tests.
    RESULTS: After synchronization, the typical pattern for clock genes was visible in control cells over the 24 h period. This pattern was significantly altered by mechanical strain. Under tensile stress, ARNTL gene expression was reduced, while Per1 and 2 gene expression were upregulated. In addition, mechanical stress had a differential effect on the expression of Col-1α and IL1‑β depending on its initiation within the circadian rhythm (group SI1 vs group SI2). For RUNX2, no significant differences in the two groups were observed.
    CONCLUSIONS: Our results suggest that mechanical stress affects the molecular peripheral oscillator of PDL cells. Vice versa, the circadian rhythm also seems to partially influence the effects that mechanical stress exerts on PDL cells.
    UNASSIGNED: ZIEL: Ziel dieser Arbeit war es, den Einfluss von mechanischer Belastung, wie sie auch im Rahmen einer kieferorthopädischen Zahnbewegung auf das Parodontalligament (PDL) appliziert wird, auf Funktionen von Clock-Genen zu untersuchen. Zusätzlich sollte analysiert werden, ob sich eine mechanische Belastung in Abhängigkeit der zirkadianen Rhythmik unterschiedlich auf wichtige Proteine der PDL-Zellen auswirkt.
    METHODS: Die periphere zirkadiane Rhythmik humaner PDL-Zellen wurde mittels Dexamethason synchronisiert und einer statischen Dehnung von 20% über bis zu 24 h ausgesetzt. Parallel wurde eine Kontrollgruppe ohne Dehnung angesetzt. In Zeitintervallen von 4 h wurde die Genexpression der Clock-Gene mittels qRT-PCR („quantitative real-time polymerase chain reaction“) bestimmt. Weiter wurden die Zellen einem Dehnungsintervall von 4 h zu den Zeitpunkten 0 h (Gruppe SI1) und 12 h (Gruppe SI2) nach Synchronisation ausgesetzt. Die Expression der Gene Collagen-1α (Col-1α), Interleukin-1β (IL1-β) und Runt-verwandter Transkriptionsfaktor 2 (RUNX2) wurde jeweils nach 2 und 4 h mittels qRT-PCR und ELISA („enzyme-linked immunosorbent assay“) quantifiziert. Die statistische Analyse erfolgte über eine einseitige Varianzanalyse (ANOVA) und Post-hoc-Tests.
    UNASSIGNED: In den Kontrollzellen war nach Synchronisation das für die Clock-Gene typische Muster im Verlauf der 24 h erkennbar. Dieses wurde durch die mechanische Belastung signifikant verändert. Unter Zugbelastung wurde eine Verringerung der ARNTL-Genexpression verzeichnet, während die Per1- und Per2-Genexpression hochreguliert wurden. Die mechanische Belastung hatte abhängig von der Initiierung nach Synchronisation (Gruppe SI1 vs. Gruppe SI2) einen unterschiedlichen Einfluss auf die Expression von Col-1α und IL1‑β. Für Runx2 wurde in beiden Gruppen kein Unterschied beobachtet.
    UNASSIGNED: Die Ergebnisse legen nahe, dass mechanische Belastung den molekularen peripheren Oszillator der PDL-Zellen beeinflusst. Umgekehrt scheint auch die zirkadiane Rhythmik die Auswirkungen von mechanischem Stress auf PDL-Zellen teilweise zu beeinflussen.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    血压(BP)显示昼夜节律,这种模式的中断会增加心血管风险。虽然中枢和外围时钟基因都参与了这些过程,血管时钟基因的重要性尚未完全了解。BP,血管反应性,肾素-血管紧张素-醛固酮系统表现出明显的性别差异,但是昼夜节律模式的变化是否是这些差异的基础还不清楚。因此,我们假设昼夜节律和血管时钟基因在不同性别之间会有所不同,并且会被AngII诱导的高血压所钝化.AngII输注可提高男性和女性的血压,并破坏昼夜节律。在女性中,显示了对心率和运动活动的影响,而在男性中,高血压抑制了压力反射敏感性。在两种性别中都注意到Per1和Bmal1的血管表达模式明显破坏。G蛋白偶联雌激素受体(Gper1)的血管表达在两种性别中也显示出昼夜同步,与Per1和Per2相似,并被高血压破坏。相比之下,Esr1的血管表达仅在女性中显示昼夜节律和高血压引起的破坏。这项研究表明,高血压对血压节律性的影响非常相似,血管时钟基因,和血管雌激素受体在两性中的表达。我们发现高血压对女性的运动活动和心率以及男性的压力反射敏感性的影响更大,并且还揭示了血管雌激素受体的昼夜调节。这些见解凸显了昼夜节律生物学之间的错综复杂的联系,性别差异,和心血管调节。
    Blood pressure (BP) displays a circadian rhythm and disruptions in this pattern elevate cardiovascular risk. While both central and peripheral clock genes are implicated in these processes, the importance of vascular clock genes is not fully understood. BP, vascular reactivity, and the renin-angiotensin-aldosterone system display overt sex differences, but whether changes in circadian patterns underlie these differences is unknown. Therefore, we hypothesized that circadian rhythms and vascular clock genes would differ across sex and would be blunted by Ang II-induced hypertension. Ang II infusion elevated BP and disrupted circadian patterns similarly in both males and females. In females, an impact on heart rate and locomotor activity was revealed, while in males hypertension suppressed baroreflex sensitivity. A marked disruption in the vascular expression patterns of Per1 and Bmal1 were noted in both sexes. Vascular expression of the G protein-coupled estrogen receptor (Gper1) also showed diurnal synchronization in both sexes that was similar to that of Per1 and Per2 and disrupted by hypertension. In contrast, vascular expression of Esr1 showed a diurnal rhythm and hypertension-induced disruption only in females. This study shows a strikingly similar impact of hypertension on BP rhythmicity, vascular clock genes, and vascular estrogen receptor expression in both sexes. We identified a greater impact of hypertension on locomotor activity and heart rate in females and on baroreflex sensitivity in males and also revealed a diurnal regulation of vascular estrogen receptors. These insights highlight the intricate ties between circadian biology, sex differences, and cardiovascular regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    昼夜节律和睡眠稳态研究中的基因表达动力学分析通常使用单独的模型描述这两个过程。有节奏表达的基因是,然而,可能会受到这两个过程的影响。我们实施了一个驱动,阻尼谐波振荡器模型,用于估计昼夜和睡眠唤醒驱动对基因表达的影响。该模型可靠地捕获了皮层中的各种动态,肝脏,以及在各种实验条件下取自小鼠和人类的血液转录组。在驱动皮质基因表达方面,睡眠-觉醒驱动因素超过昼夜节律因素,而在肝脏和血液中观察到相反的情况。由于组织和基因特异性反应,睡眠剥夺导致长期持续的组织内和组织间去同步化。该模型表明,恢复性睡眠有助于这些持久的变化。结果表明,对基因表达的日常节律的分析必须考虑昼夜节律和睡眠-觉醒影响之间的复杂相互作用。补充信息中包含了本文透明的同行评审过程的记录。
    Analyses of gene-expression dynamics in research on circadian rhythms and sleep homeostasis often describe these two processes using separate models. Rhythmically expressed genes are, however, likely to be influenced by both processes. We implemented a driven, damped harmonic oscillator model to estimate the contribution of circadian- and sleep-wake-driven influences on gene expression. The model reliably captured a wide range of dynamics in cortex, liver, and blood transcriptomes taken from mice and humans under various experimental conditions. Sleep-wake-driven factors outweighed circadian factors in driving gene expression in the cortex, whereas the opposite was observed in the liver and blood. Because of tissue- and gene-specific responses, sleep deprivation led to a long-lasting intra- and inter-tissue desynchronization. The model showed that recovery sleep contributed to these long-lasting changes. The results demonstrate that the analyses of the daily rhythms in gene expression must take the complex interactions between circadian and sleep-wake influences into account. A record of this paper\'s transparent peer review process is included in the supplemental information.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大多数昆虫进入滞育期,生理休眠状态对于持久的严酷季节至关重要,光周期作为其诱导的主要线索,确保过程的适当季节性时机。尽管通过敲除或敲除时钟基因已经证明了昼夜节律时钟在光周期时间测量中的参与,时钟基因隐色素1(cry1)的参与,它作为光感受器,涉及各种昆虫物种的昼夜节律时钟的光夹带,尚不清楚。在家蚕的双伏特菌株中,家蚕,胚胎滞育受母蛾在胚胎和幼虫阶段经历的环境条件的控制和影响。先前的研究强调了核心时钟基因的作用,包括期间(每),永恒(tim),时钟(Clk)和周期(cyc),在B.mori的光周期滞育诱导中。在这项研究中,我们重点研究了cry1基因在B.mori光周期中的参与。系统发育分析和保守域鉴定证实了果蝇型cry(cry1)和哺乳动物型cry(cry2)基因在B.mori基因组中的存在,类似于其他鳞翅目。时间表达分析显示,在光相期间cry1基因表达较高,而在阴相期期间表达较低。核心时钟基因敲除(每,Tim,Clk和cyc)破坏了这种时间表达模式。使用CRISPR/Cas9介导的基因组编辑,我们在p50T中建立了cry1敲除菌株,在胚胎和幼虫阶段都表现出清晰的光周期的双伏特菌株。尽管野生型菌株在持续的黑暗中表现出昼夜节律,cry1敲除应变表现出心律失常性羽化,将B.moricry1包含在控制行为节奏的昼夜节律时钟反馈回路中。cry1敲除品系的雌性在胚胎和幼虫阶段均未能控制光周期滞育诱导,反映了在持续黑暗中饲养的野生型个体的滞育表型,表明B.moriCRY1作为光感受器有助于光周期时间测量。此外,在cry1/tim双敲除菌株中,幼虫期的光周期滞育诱导被废除,表明CRY1接收到的光信息被中继到昼夜节律时钟。总的来说,这项研究代表了cry1参与昆虫光周期的第一个证据,特别是在滞育诱导中。
    Most insects enter diapause, a state of physiological dormancy crucial for enduring harsh seasons, with photoperiod serving as the primary cue for its induction, ensuring proper seasonal timing of the process. Although the involvement of the circadian clock in the photoperiodic time measurement has been demonstrated through knockdown or knockout of clock genes, the involvement of clock gene cryptochrome 1 (cry1), which functions as a photoreceptor implicated in photoentrainment of the circadian clock across various insect species, remains unclear. In bivoltine strains of the silkworm, Bombyx mori, embryonic diapause is maternally controlled and affected by environmental conditions experienced by mother moths during embryonic and larval stages. Previous research highlighted the role of core clock genes, including period (per), timeless (tim), Clock (Clk) and cycle (cyc), in photoperiodic diapause induction in B. mori. In this study, we focused on the involvement of cry1 gene in B. mori photoperiodism. Phylogenetic analysis and conserved domain identification confirmed the presence of both Drosophila-type cry (cry1) and mammalian-type cry (cry2) genes in the B. mori genome, akin to other lepidopterans. Temporal expression analysis revealed higher cry1 gene expression during the photophase and lower expression during the scotophase, with knockouts of core clock genes (per, tim, Clk and cyc) disrupting this temporal expression pattern. Using CRISPR/Cas9-mediated genome editing, we established a cry1 knockout strain in p50T, a bivoltine strain exhibiting clear photoperiodism during both embryonic and larval stages. Although the wild-type strain displayed circadian rhythm in eclosion under continuous darkness, the cry1 knockout strain exhibited arrhythmic eclosion, implicating B. mori cry1 in the circadian clock feedback loop governing behavior rhythms. Females of the cry1 knockout strain failed to control photoperiodic diapause induction during both embryonic and larval stages, mirroring the diapause phenotype of the wild-type individuals reared under constant darkness, indicating that B. mori CRY1 contributes to photoperiodic time measurement as a photoreceptor. Furthermore, photoperiodic diapause induction during the larval stage was abolished in a cry1/tim double-knockout strain, suggesting that photic information received by CRY1 is relayed to the circadian clock. Overall, this study represents the first evidence of cry1 involvement in insect photoperiodism, specifically in diapause induction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人工照明的出现,特别是在晚上和晚上,极大地改变了最近可预测的日常明暗周期。改变光环境会扰乱生物钟,对情绪和认知产生负面影响。虽然青少年通常经历光/暗周期的慢性变化,我们对青少年大脑如何适应改变的光环境的理解仍然有限。这里,我们调查了青春期慢性光周期中断(LCD)的影响,将青春期小鼠暴露于19小时的光照和5小时的黑暗中,持续5天,并将12L:12D暴露于每周2天(LCD组),持续4周。我们表明,LCD暴露不会影响昼夜节律运动活动,但会损害记忆力并增加青少年小鼠的回避反应。时钟基因表达和神经元活动节律分析显示,LCD破坏了齿状回(DG)和内侧杏仁核(MeA)中的局部分子时钟和神经元活动,但在昼夜节律起搏器(SCN)中却没有。此外,我们表征了MeA的光反应性,并表明生长抑素神经元在青春期受到急性和慢性异常光暴露的影响。我们的研究提供了新的证据,强调了青春期发育过程中光环境改变对神经元生理和行为的潜在影响。
    The advent of artificial lighting, particularly during the evening and night, has significantly altered the predictable daily light and dark cycles in recent times. Altered light environments disrupt the biological clock and negatively impact mood and cognition. Although adolescents commonly experience chronic changes in light/dark cycles, our understanding of how the adolescents\' brain adapts to altered light environments remains limited. Here, we investigated the impact of chronic light cycle disruption (LCD) during adolescence, exposing adolescent mice to 19 h of light and 5 h of darkness for 5 days and 12 L:12D for 2 days per week (LCD group) for 4 weeks. We showed that LCD exposure did not affect circadian locomotor activity but impaired memory and increased avoidance response in adolescent mice. Clock gene expression and neuronal activity rhythms analysis revealed that LCD disrupted local molecular clock and neuronal activity in the dentate gyrus (DG) and in the medial amygdala (MeA) but not in the circadian pacemaker (SCN). In addition, we characterized the photoresponsiveness of the MeA and showed that somatostatin neurons are affected by acute and chronic aberrant light exposure during adolescence. Our research provides new evidence highlighting the potential consequences of altered light environments during pubertal development on neuronal physiology and behaviors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The bidirectional relationship between cerebral structures and the gastrointestinal tract involving the microbiota embraces the scientific concept of the microbiota-gut-brain axis. The gut microbiome plays an important role in many physiological and biochemical processes of the human body, in the immune response and maintenance of homeostasis, as well as in the regulation of circadian rhythms. There is a relationship between the higher prevalence of a number of neurological disorders, sleep disorders and changes in the intestinal microbiota, which actualizes the study of the complex mechanisms of such correlation for the development of new treatment and prevention strategies. Environmental factors associated with excessive light exposure can aggravate the gut dysbiosis of intestinal microflora, and as a result, lead to sleep disturbances. This review examines the integrative mechanisms of sleep regulation associated with the gut microbiota (the role of neurotransmitters, short-chain fatty acids, unconjugated bile acids, bacterial cell wall components, cytokines). Taking into account the influence of gut dysbiosis as a risk factor in the development of various diseases, the authors systematize key aspects and modern scientific data on the importance of microflora balance to ensure optimal interaction along the microbiota-gut-brain axis in the context of the regulatory role of the sleep-wake cycle and its disorders.
    Двустороння связь между церебральными структурами и желудочно-кишечным трактом с участием микробиоты охватывает научную концепцию оси мозг—кишечник—микробиом. Кишечный микробиом принимает важное участие во многих физиологических и биохимических процессах организма, в иммунном ответе и поддержании гомеостаза, а также в регуляции циркадианных ритмов. Отмечается взаимосвязь между более высокой распространенностью ряда неврологических расстройств, нарушений сна и изменениями в микробиоте кишечника, что актуализирует изучение сложных механизмов такой корреляции для разработки новых стратегий лечения и профилактики. Факторы внешней среды, связанные с избыточным световым воздействием, могут усугубить дисбиоз кишечной микрофлоры, и, как следствие, приводят к нарушениям сна. В настоящем обзоре рассматриваются интегративные механизмы регуляции сна, связанные с микробиотой кишечника (роль нейромедиаторов, короткоцепочечных жирных кислот, неконъюгированных желчных кислот, компонентов бактериальной клеточной стенки, цитокинов). Принимая во внимание влияние дисбиоза кишечника как фактора риска при развитии различных заболеваний, авторами систематизированы ключевые аспекты и современные научные данные о значении баланса микрофлоры для обеспечения оптимального взаимодействия по оси мозг—кишечник—микробиом в контексте с регулирующей ролью цикла сон—бодрствование и его нарушений.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:糖尿病肾病(DKD)是一种与昼夜节律和生物钟调节障碍相关的复杂疾病。褪黑素(MT)被认为是一种具有肾脏保护作用的激素,但其在DKD中的作用机制尚不清楚。
    方法:我们使用来自GEO数据库的GSE151325数据集进行差异基因分析,并通过GO和KEGG分析以及PPI网络分析进一步探索相关基因和途径。此外,本研究采用2型糖尿病db/db小鼠模型,通过免疫组织化学研究褪黑素在DKD中的作用及其与时钟基因的关系,蛋白质印迹,实时PCR,ELISA,染色质免疫沉淀(ChIP),双荧光素酶报告技术,和脂质体转染技术研究DEC1siRNA。
    结果:生物信息学分析揭示了时钟基因如CLOCK的中心位置,DKD中的DEC1、Bhlhe41、CRY1和RORB。它们与关键炎症调节因子的相互作用可能揭示褪黑素治疗糖尿病肾病的潜在机制。进一步的实验结果表明,褪黑素明显改善db/db小鼠的肾脏病理变化,降低体重和血糖,在肾组织中调节时钟基因,并下调TLR2/MyD88/NF-κB信号通路。我们发现转录因子DEC1可以与TLR2启动子结合并激活其转录,而CLOCK的效果尚不清楚。脂质体转染实验进一步证实了DEC1对TLR2/MyD88/NF-κB信号通路的影响。
    结论:褪黑素通过调控时钟基因和下调TLR2/MyD88/NF-κB信号通路,显示出显著的肾脏保护作用。转录因子DEC1可能通过激活TLR2启动子转录成为肾脏炎症和纤维化的关键调控因子。这些发现为褪黑素在DKD治疗中的潜在应用提供了新的视角和方向。
    BACKGROUND: Diabetic Kidney Disease (DKD) is a complex disease associated with circadian rhythm and biological clock regulation disorders. Melatonin (MT) is considered a hormone with renal protective effects, but its mechanism of action in DKD is unclear.
    METHODS: We used the GSE151325 dataset from the GEO database for differential gene analysis and further explored related genes and pathways through GO and KEGG analysis and PPI network analysis. Additionally, this study used a type 2 diabetes db/db mouse model and investigated the role of melatonin in DKD and its relationship with clock genes through immunohistochemistry, Western blot, real-time PCR, ELISA, chromatin immunoprecipitation (ChIP), dual-luciferase reporter technology, and liposome transfection technology to study DEC1 siRNA.
    RESULTS: Bioinformatics analysis revealed the central position of clock genes such as CLOCK, DEC1, Bhlhe41, CRY1, and RORB in DKD. Their interaction with key inflammatory regulators may reveal melatonin\'s potential mechanism in treating diabetic kidney disease. Further experimental results showed that melatonin significantly improved the renal pathological changes in db/db mice, reduced body weight and blood sugar, regulated clock genes in renal tissue, and downregulated the TLR2/MyD88/NF-κB signaling pathway. We found that the transcription factor DEC1 can bind to the TLR2 promoter and activate its transcription, while CLOCK\'s effect is unclear. Liposome transfection experiments further confirmed the effect of DEC1 on the TLR2/MyD88/NF-κB signaling pathway.
    CONCLUSIONS: Melatonin shows significant renal protective effects by regulating clock genes and downregulating the TLR2/MyD88/NF-κB signaling pathway. The transcription factor DEC1 may become a key regulatory factor for renal inflammation and fibrosis by activating TLR2 promoter transcription. These findings provide new perspectives and directions for the potential application of melatonin in DKD treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于地球的自转,自然环境表现出接近24小时的明暗昼夜周期。为了适应这种能量摄入模式,生物体在很长一段时间内形成了24小时有节奏的昼夜循环,被称为昼夜节律,或生物钟。随着生物钟研究的逐步推进,越来越明显的是,昼夜节律的中断与2型糖尿病(T2D)的发生密切相关。为了进一步了解T2D和生物钟的研究进展,本文综述了生物钟与糖代谢的相关性,并分析了其潜在的作用机制。基于此,我们讨论了导致昼夜节律紊乱的潜在因素及其对发展为T2D的风险的影响,旨在为今后T2D的防治探索新的可能的干预措施。在明暗的昼夜节律下,为了适应这种变化,人体形成一个涉及多种基因的内部生物钟,蛋白质和其他分子。主要机制是以CLOCK/BMAL1异源二聚体为中心的转录-翻译反馈环。构成此环的重要生物钟基因的表达可以调节T2DM相关血糖性状如葡萄糖摄取,脂肪代谢,各种外周组织和器官的胰岛素分泌/胰高血糖素分泌和敏感性。此外,睡眠,光,昼夜节律下的饮食因素也影响着T2DM的发生。
    Due to the Earth\'s rotation, the natural environment exhibits a light-dark diurnal cycle close to 24 hours. To adapt to this energy intake pattern, organisms have developed a 24-hour rhythmic diurnal cycle over long periods, known as the circadian rhythm, or biological clock. With the gradual advancement of research on the biological clock, it has become increasingly evident that disruptions in the circadian rhythm are closely associated with the occurrence of type 2 diabetes (T2D). To further understand the progress of research on T2D and the biological clock, this paper reviews the correlation between the biological clock and glucose metabolism and analyzes its potential mechanisms. Based on this, we discuss the potential factors contributing to circadian rhythm disruption and their impact on the risk of developing T2D, aiming to explore new possible intervention measures for the prevention and treatment of T2D in the future. Under the light-dark circadian rhythm, in order to adapt to this change, the human body forms an internal biological clock involving a variety of genes, proteins and other molecules. The main mechanism is the transcription-translation feedback loop centered on the CLOCK/BMAL1 heterodimer. The expression of important circadian clock genes that constitute this loop can regulate T2DM-related blood glucose traits such as glucose uptake, fat metabolism, insulin secretion/glucagon secretion and sensitivity in various peripheral tissues and organs. In addition, sleep, light, and dietary factors under circadian rhythms also affect the occurrence of T2DM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    昼夜节律,~24小时周期的生理和行为过程,可以通过外部信号同步(例如,光),即使在他们不在的情况下也会坚持下去。因此,昼夜节律失调会对生物体的健康产生不利影响。这种计时系统是由遗传编码的内源性机制产生和维持的,该机制由互锁的转录/翻译反馈回路组成,该回路产生核心时钟基因的节律表达。全基因组关联研究(GWAS)和正向遗传研究表明,时钟基因中的SNP会影响基因调控并与发展各种疾病的风险相关。我们讨论了与各种表型相关的核心时钟基因的遗传变异,它们对人类健康的影响,并强调需要在昼夜节律调节这一领域进行深入研究。
    Circadian rhythms, ~24 h cycles of physiological and behavioral processes, can be synchronized by external signals (e.g., light) and persist even in their absence. Consequently, dysregulation of circadian rhythms adversely affects the well-being of the organism. This timekeeping system is generated and sustained by a genetically encoded endogenous mechanism composed of interlocking transcriptional/translational feedback loops that generate rhythmic expression of core clock genes. Genome-wide association studies (GWAS) and forward genetic studies show that SNPs in clock genes influence gene regulation and correlate with the risk of developing various conditions. We discuss genetic variations in core clock genes that are associated with various phenotypes, their implications for human health, and stress the need for thorough studies in this domain of circadian regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号