clock genes

时钟基因
  • 文章类型: Journal Article
    乳腺癌(BC)是全球女性癌症死亡的主要原因。由于长时间接触夜班工作(新南威尔士州),从事轮班工作的妇女面临着更高的不列颠哥伦比亚省风险,被国际癌症研究机构(IARC)归类为潜在致癌。这种风险与细胞水平上由时钟基因控制的昼夜节律的破坏有关。然而,分子机制尚不清楚。这项研究旨在评估长期暴露于新南威尔士州的女性中时钟基因作为潜在的BC生物标志物。在护士健康研究I和IIGEO数据集内的成对BC和正常乳腺组织中分析了时钟基因表达。对来自健康夜班工人和具有不同BC易感性的女性的其他基因表达数据集进行了验证。以及单细胞测序数据集。通过miRNA分析鉴定时钟基因的转录后调节因子。与正常组织相比,发现BC中时钟基因表达的显着变化。BHLHE40,CIART,时钟,PDPK1和TIMELESS过度表达,而HLF,NFIL3、NPAS3、PER1、PER3、SIM1和TEF表达不足。PER1和TEF的下调和CLOCK的上调与健康女性的BC风险增加相关。此外,26个miRNAs,包括miR-10a,miR-21、miR-107和miR-34被鉴定为受NSW影响的潜在转录后调节因子。总之,一组时钟基因和昼夜节律miRNAs被认为是夜班工人的BC易感性生物标志物,支持对风险分层和早期检测策略的影响。
    Breast cancer (BC) is the leading cause of cancer death among women worldwide. Women employed in shift jobs face heightened BC risk due to prolonged exposure to night shift work (NSW), classified as potentially carcinogenic by the International Agency for Research on Cancer (IARC). This risk is linked to disruptions in circadian rhythms governed by clock genes at the cellular level. However, the molecular mechanisms are unclear. This study aimed to assess clock genes as potential BC biomarkers among women exposed to long-term NSW. Clock gene expression was analysed in paired BC and normal breast tissues within Nurses\' Health Studies I and II GEO datasets. Validation was performed on additional gene expression datasets from healthy night shift workers and women with varying BC susceptibility, as well as single-cell sequencing datasets. Post-transcriptional regulators of clock genes were identified through miRNA analyses. Significant alterations in clock gene expression in BC compared to normal tissues were found. BHLHE40, CIART, CLOCK, PDPK1, and TIMELESS were over-expressed, while HLF, NFIL3, NPAS3, PER1, PER3, SIM1, and TEF were under-expressed. The downregulation of PER1 and TEF and upregulation of CLOCK correlated with increased BC risk in healthy women. Also, twenty-six miRNAs, including miR-10a, miR-21, miR-107, and miR-34, were identified as potential post-transcriptional regulators influenced by NSW. In conclusion, a panel of clock genes and circadian miRNAs are suggested as BC susceptibility biomarkers among night shift workers, supporting implications for risk stratification and early detection strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    产前酒精暴露(AE)婴儿和儿童经常表现出睡眠模式中断。包括更频繁的觉醒,减少总睡眠时间,和更多的夜间睡眠变化。尽管睡眠模式和昼夜节律之间有很强的联系,对AE患者的昼夜节律紊乱知之甚少。最近,一些报道表明,评估生物钟基因在生物体液中的表达模式可以揭示个体的昼夜节律表型。人类唾液提供了一种新兴的和容易获得的生理样品,可以非侵入性地收集用于核心时钟基因转录本分析。我们比较了ZT0-ZT11之间光周期期间有和没有AE的6-10岁儿童唾液样本中核心时钟基因及其调节基因的表达模式。我们从样品中分离了RNA,并使用人特异性引物通过定量实时PCR测量了核心时钟基因和时钟调节基因的表达模式。对AE儿童唾液样本中核心时钟基因表达水平的分析表明核心时钟BMAL1,CLOCK,与年龄匹配的对照儿童相比,PER1-3和CRY1,2。我们在AE组和对照组中没有发现时钟基因水平的任何性别差异。Cosinor分析用于评估这些时钟基因的节律模式,在对照组中确定了核心时钟基因水平的昼夜节律模式,但在AE组中却没有。唾液昼夜节律生物标志物ARRB1的基因表达谱在对照儿童的唾液中是有节律的,但在AE儿童中是有节律的。在时钟调节基因中也观察到改变的表达模式:NPAS2,NFL3,NR1D1,DEC1,DEC2和DBP,以及染色质修饰剂:MLL1,P300,SIRT1,EZH2,HDAC3和ZR1D1,已知可维持核心时钟基因的节律表达。总的来说,这些发现为AE干扰唾液中核心时钟基因和时钟调节染色质修饰剂的昼夜节律表达提供了第一个证据。
    Prenatal alcohol-exposed (AE) infants and children often demonstrate disrupted sleep patterns, including more frequent awakenings, reduced total sleep time, and more night-to-night sleep variability. Despite the strong connection between sleep patterns and circadian rhythmicity, relatively little is known about circadian rhythm disruptions in individuals with AE. Recently, several reports demonstrated that evaluating the expression patterns of human clock genes in biological fluids could reveal an individual\'s circadian phenotype. Human saliva offers an emerging and easily available physiological sample that can be collected non-invasively for core-clock gene transcript analyses. We compared the expression patterns of core-clock genes and their regulatory genes in salivary samples of children aged 6-10 years-old with and without AE during the light cycle between ZT0-ZT11. We isolated the RNA from the samples and measured the expression patterns of core clock genes and clock regulating genes using the human specific primers with quantitative real-time PCR. Analysis of core clock genes expression levels in saliva samples from AE children indicates significantly altered levels in expression of core-clock BMAL1, CLOCK, PER1-3 and CRY1,2, as compared to those in age-matched control children. We did not find any sex difference in levels of clock genes in AE and control groups. Cosinor analysis was used to evaluate the rhythmic pattern of these clock genes, which identified circadian patterns in the levels of core clock genes in the control group but absent in the AE group. The gene expression profile of a salivary circadian biomarker ARRB1 was rhythmic in saliva of control children but was arhythmic in AE children. Altered expression patterns were also observed in clock regulatory genes: NPAS2, NFL3, NR1D1, DEC1, DEC2, and DBP, as well as chromatin modifiers: MLL1, P300, SIRT1, EZH2, HDAC3, and ZR1D1, known to maintain rhythmic expression of core-clock genes. Overall, these findings provide the first evidence that AE disturbs the circadian patten expression of core clock genes and clock-regulatory chromatin modifiers in saliva.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    物质使用障碍是全球主要的健康问题,在青少年和年轻人中患病率很高。最常见的滥用物质包括酒精,大麻,可卡因,尼古丁,和鸦片。证据表明,当代生活方式与环境需求之间的不匹配导致昼夜节律中断,从而损害最佳生理和行为功能。这可能会增加发展物质使用障碍和相关问题的脆弱性。昼夜节律系统在调节睡眠-觉醒周期和奖励处理中起着重要作用,两者都直接影响药物滥用。扭曲的物质使用可以通过影响昼夜节律基因表达而对昼夜节律系统产生相互影响。考虑到物质使用障碍的有害健康后果和深远的社会影响,理解它与昼夜节律的复杂关联是至关重要的,这可以为产生新的时间治疗方法铺平道路。在这篇叙述性评论中,我们探讨了昼夜节律和睡眠中断对不同滥用药物使用和复发的潜在影响.讨论了生物钟基因与药物奖励途径的关系,以及可以探索的潜在研究领域,以通过改善昼夜节律卫生来最大程度地减少无序的物质使用。
    Substance use disorder is a major global health concern, with a high prevalence among adolescents and young adults. The most common substances of abuse include alcohol, marijuana, cocaine, nicotine, and opiates. Evidence suggests that a mismatch between contemporary lifestyle and environmental demands leads to disrupted circadian rhythms that impair optimal physiological and behavioral function, which can increase the vulnerability to develop substance use disorder and related problems. The circadian system plays an important role in regulating the sleep-wake cycle and reward processing, both of which directly affect substance abuse. Distorted substance use can have a reciprocal effect on the circadian system by influencing circadian clock gene expression. Considering the detrimental health consequences and profound societal impact of substance use disorder, it is crucial to comprehend its complex association with circadian rhythms, which can pave the way for the generation of novel chronotherapeutic treatment approaches. In this narrative review, we have explored the potential contributions of disrupted circadian rhythms and sleep on use and relapse of different substances of abuse. The involvement of circadian clock genes with drug reward pathways is discussed, along with the potential research areas that can be explored to minimize disordered substance use by improving circadian hygiene.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    众所周知,夜光会产生各种各样的行为结果,包括促进焦虑,抑郁症,多动症,不正常的社交能力,学习和记忆缺陷。不幸的是,我们都生活在一个24小时的社会中,人们在夜班工作中暴露于夜间照明或光污染-需要全天候的紧急服务-以及建筑物和路灯,使夜间光照几乎不可避免。此外,夜间屏幕时间(电视和智能设备)的增加也导致睡眠和行为障碍恶化。使这些因素更加复杂的是,与年幼的儿童和成人相比,青少年倾向于“夜猫子”,并且更喜欢晚上的时间型。所以这些青少年将有更高的可能性被暴露在晚上的光。更糟糕的是,早上8点或更早的高中开学时间普遍存在——这是过早的开学时间的组合,在夜间曝光,偏爱晚上的时间型是减少和减少睡眠的秘诀,这可能导致该人群对行为问题的易感性增加。因此,这个迷你评论将显示,使用人类和啮齿动物模型研究,夜光如何影响行为结果和应激反应,将光信号和昼夜节律定时系统连接到下丘脑-垂体肾上腺轴。此外,这项审查还将表明,青少年更有可能表现出异常的行为,以响应晚上的光,由于在这段时间内的发育和激素调节的变化,以及讨论有助于减轻这些负面影响的潜在干预措施。
    Light-at-night is known to produce a wide variety of behavioral outcomes including promoting anxiety, depression, hyperactivity, abnormal sociability, and learning and memory deficits. Unfortunately, we all live in a 24-h society where people are exposed to light-at-night or light pollution through night-shift work - the need for all-hours emergency services - as well as building and street-lights, making light-at-night exposure practically unavoidable. Additionally, the increase in screentime (tvs and smart devices) during the night also contributes to poorer sleep and behavioral impairments. Compounding these factors is the fact that adolescents tend to be \"night owls\" and prefer an evening chronotype compared to younger children and adults, so these teenagers will have a higher likelihood of being exposed to light-at-night. Making matters worse is the prevalence of high-school start times of 8 am or earlier - a combination of too early school start times, light exposure during the night, and preference for evening chronotypes is a recipe for reduced and poorer sleep, which can contribute to increased susceptibility for behavioral issues for this population. As such, this mini-review will show, using both human and rodent model studies, how light-at-night affects behavioral outcomes and stress responses, connecting photic signaling and the circadian timing system to the hypothalamic-pituitary adrenal axis. Additionally, this review will also demonstrate that adolescents are more likely to exhibit abnormal behavior in response to light-at-night due to changes in development and hormone regulation during this time period, as well as discuss potential interventions that can help mitigate these negative effects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: The aim of this study was to investigate the influence of mechanical strain on clock gene function in periodontal ligament (PDL) cells. Furthermore, we wanted to analyze whether effects induced by mechanical stress vary in relation to the circadian rhythm.
    METHODS: Human PDL fibroblasts were synchronized in their circadian rhythm with dexamethasone and stretched over 24 h. Unstretched cells served as controls. Gene expression of the core clock genes were analyzed at 4 h intervals by quantitative real-time polymerase chain reaction (qRT-PCR). Time points 0 h (group SI1) and 12 h (group SI2) after synchronization served as starting points of a 4 h force application period. Collagen-1α (COL-1α/Col-1α), interleukin-1β (IL1-β), and runt-related transcription factor 2 (RUNX2/Runx2) were assessed by qRT-PCR and enzyme-linked immunosorbent assay (ELISA) after 2 and 4 h. Statistical analysis comprised one-way analysis of variance (ANOVA) and post hoc tests.
    RESULTS: After synchronization, the typical pattern for clock genes was visible in control cells over the 24 h period. This pattern was significantly altered by mechanical strain. Under tensile stress, ARNTL gene expression was reduced, while Per1 and 2 gene expression were upregulated. In addition, mechanical stress had a differential effect on the expression of Col-1α and IL1‑β depending on its initiation within the circadian rhythm (group SI1 vs group SI2). For RUNX2, no significant differences in the two groups were observed.
    CONCLUSIONS: Our results suggest that mechanical stress affects the molecular peripheral oscillator of PDL cells. Vice versa, the circadian rhythm also seems to partially influence the effects that mechanical stress exerts on PDL cells.
    UNASSIGNED: ZIEL: Ziel dieser Arbeit war es, den Einfluss von mechanischer Belastung, wie sie auch im Rahmen einer kieferorthopädischen Zahnbewegung auf das Parodontalligament (PDL) appliziert wird, auf Funktionen von Clock-Genen zu untersuchen. Zusätzlich sollte analysiert werden, ob sich eine mechanische Belastung in Abhängigkeit der zirkadianen Rhythmik unterschiedlich auf wichtige Proteine der PDL-Zellen auswirkt.
    METHODS: Die periphere zirkadiane Rhythmik humaner PDL-Zellen wurde mittels Dexamethason synchronisiert und einer statischen Dehnung von 20% über bis zu 24 h ausgesetzt. Parallel wurde eine Kontrollgruppe ohne Dehnung angesetzt. In Zeitintervallen von 4 h wurde die Genexpression der Clock-Gene mittels qRT-PCR („quantitative real-time polymerase chain reaction“) bestimmt. Weiter wurden die Zellen einem Dehnungsintervall von 4 h zu den Zeitpunkten 0 h (Gruppe SI1) und 12 h (Gruppe SI2) nach Synchronisation ausgesetzt. Die Expression der Gene Collagen-1α (Col-1α), Interleukin-1β (IL1-β) und Runt-verwandter Transkriptionsfaktor 2 (RUNX2) wurde jeweils nach 2 und 4 h mittels qRT-PCR und ELISA („enzyme-linked immunosorbent assay“) quantifiziert. Die statistische Analyse erfolgte über eine einseitige Varianzanalyse (ANOVA) und Post-hoc-Tests.
    UNASSIGNED: In den Kontrollzellen war nach Synchronisation das für die Clock-Gene typische Muster im Verlauf der 24 h erkennbar. Dieses wurde durch die mechanische Belastung signifikant verändert. Unter Zugbelastung wurde eine Verringerung der ARNTL-Genexpression verzeichnet, während die Per1- und Per2-Genexpression hochreguliert wurden. Die mechanische Belastung hatte abhängig von der Initiierung nach Synchronisation (Gruppe SI1 vs. Gruppe SI2) einen unterschiedlichen Einfluss auf die Expression von Col-1α und IL1‑β. Für Runx2 wurde in beiden Gruppen kein Unterschied beobachtet.
    UNASSIGNED: Die Ergebnisse legen nahe, dass mechanische Belastung den molekularen peripheren Oszillator der PDL-Zellen beeinflusst. Umgekehrt scheint auch die zirkadiane Rhythmik die Auswirkungen von mechanischem Stress auf PDL-Zellen teilweise zu beeinflussen.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    血压(BP)显示昼夜节律,这种模式的中断会增加心血管风险。虽然中枢和外围时钟基因都参与了这些过程,血管时钟基因的重要性尚未完全了解。BP,血管反应性,肾素-血管紧张素-醛固酮系统表现出明显的性别差异,但是昼夜节律模式的变化是否是这些差异的基础还不清楚。因此,我们假设昼夜节律和血管时钟基因在不同性别之间会有所不同,并且会被AngII诱导的高血压所钝化.AngII输注可提高男性和女性的血压,并破坏昼夜节律。在女性中,显示了对心率和运动活动的影响,而在男性中,高血压抑制了压力反射敏感性。在两种性别中都注意到Per1和Bmal1的血管表达模式明显破坏。G蛋白偶联雌激素受体(Gper1)的血管表达在两种性别中也显示出昼夜同步,与Per1和Per2相似,并被高血压破坏。相比之下,Esr1的血管表达仅在女性中显示昼夜节律和高血压引起的破坏。这项研究表明,高血压对血压节律性的影响非常相似,血管时钟基因,和血管雌激素受体在两性中的表达。我们发现高血压对女性的运动活动和心率以及男性的压力反射敏感性的影响更大,并且还揭示了血管雌激素受体的昼夜调节。这些见解凸显了昼夜节律生物学之间的错综复杂的联系,性别差异,和心血管调节。
    Blood pressure (BP) displays a circadian rhythm and disruptions in this pattern elevate cardiovascular risk. Although both central and peripheral clock genes are implicated in these processes, the importance of vascular clock genes is not fully understood. BP, vascular reactivity, and the renin-angiotensin-aldosterone system display overt sex differences, but whether changes in circadian patterns underlie these differences is unknown. Therefore, we hypothesized that circadian rhythms and vascular clock genes would differ across sex and would be blunted by angiotensin II (ANG II)-induced hypertension. ANG II infusion elevated BP and disrupted circadian patterns similarly in both males and females. In females, an impact on heart rate (HR) and locomotor activity was revealed, whereas in males hypertension suppressed baroreflex sensitivity (BRS). A marked disruption in the vascular expression patterns of period circadian regulator 1 (Per1) and brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1 (Bmal1) was noted in both sexes. Vascular expression of the G protein-coupled estrogen receptor (Gper1) also showed diurnal synchronization in both sexes that was similar to that of Per1 and Per2 and disrupted by hypertension. In contrast, vascular expression of estrogen receptor 1 (Esr1) showed a diurnal rhythm and hypertension-induced disruption only in females. This study shows a strikingly similar impact of hypertension on BP rhythmicity, vascular clock genes, and vascular estrogen receptor expression in both sexes. We identified a greater impact of hypertension on locomotor activity and heart rate in females and on baroreflex sensitivity in males and also revealed a diurnal regulation of vascular estrogen receptors. These insights highlight the intricate ties between circadian biology, sex differences, and cardiovascular regulation.NEW & NOTEWORTHY This study reveals that ANG II-induced hypertension disrupts the circadian rhythm of blood pressure in both male and female mice, with parallel effects on vascular clock gene and estrogen receptor diurnal patterns. Notably, sex-specific responses to hypertension in terms of locomotor activity, heart rate, and baroreflex sensitivity are revealed. These findings pave the way for chronotherapeutic strategies tailored to mitigate cardiovascular risks associated with disrupted circadian rhythms in hypertension.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    昼夜节律和睡眠稳态研究中的基因表达动力学分析通常使用单独的模型描述这两个过程。有节奏表达的基因是,然而,可能会受到这两个过程的影响。我们实施了一个驱动,阻尼谐波振荡器模型,用于估计昼夜和睡眠唤醒驱动对基因表达的影响。该模型可靠地捕获了皮层中的各种动态,肝脏,以及在各种实验条件下取自小鼠和人类的血液转录组。在驱动皮质基因表达方面,睡眠-觉醒驱动因素超过昼夜节律因素,而在肝脏和血液中观察到相反的情况。由于组织和基因特异性反应,睡眠剥夺导致长期持续的组织内和组织间去同步化。该模型表明,恢复性睡眠有助于这些持久的变化。结果表明,对基因表达的日常节律的分析必须考虑昼夜节律和睡眠-觉醒影响之间的复杂相互作用。补充信息中包含了本文透明的同行评审过程的记录。
    Analyses of gene-expression dynamics in research on circadian rhythms and sleep homeostasis often describe these two processes using separate models. Rhythmically expressed genes are, however, likely to be influenced by both processes. We implemented a driven, damped harmonic oscillator model to estimate the contribution of circadian- and sleep-wake-driven influences on gene expression. The model reliably captured a wide range of dynamics in cortex, liver, and blood transcriptomes taken from mice and humans under various experimental conditions. Sleep-wake-driven factors outweighed circadian factors in driving gene expression in the cortex, whereas the opposite was observed in the liver and blood. Because of tissue- and gene-specific responses, sleep deprivation led to a long-lasting intra- and inter-tissue desynchronization. The model showed that recovery sleep contributed to these long-lasting changes. The results demonstrate that the analyses of the daily rhythms in gene expression must take the complex interactions between circadian and sleep-wake influences into account. A record of this paper\'s transparent peer review process is included in the supplemental information.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大多数昆虫进入滞育期,生理休眠状态对于持久的严酷季节至关重要,光周期作为其诱导的主要线索,确保过程的适当季节性时机。尽管通过敲除或敲除时钟基因已经证明了昼夜节律时钟在光周期时间测量中的参与,时钟基因隐色素1(cry1)的参与,它作为光感受器,涉及各种昆虫物种的昼夜节律时钟的光夹带,尚不清楚。在家蚕的双伏特菌株中,家蚕,胚胎滞育受母蛾在胚胎和幼虫阶段经历的环境条件的控制和影响。先前的研究强调了核心时钟基因的作用,包括期间(每),永恒(tim),时钟(Clk)和周期(cyc),在B.mori的光周期滞育诱导中。在这项研究中,我们重点研究了cry1基因在B.mori光周期中的参与。系统发育分析和保守域鉴定证实了果蝇型cry(cry1)和哺乳动物型cry(cry2)基因在B.mori基因组中的存在,类似于其他鳞翅目。时间表达分析显示,在光相期间cry1基因表达较高,而在阴相期期间表达较低。核心时钟基因敲除(每,Tim,Clk和cyc)破坏了这种时间表达模式。使用CRISPR/Cas9介导的基因组编辑,我们在p50T中建立了cry1敲除菌株,在胚胎和幼虫阶段都表现出清晰的光周期的双伏特菌株。尽管野生型菌株在持续的黑暗中表现出昼夜节律,cry1敲除应变表现出心律失常性羽化,将B.moricry1包含在控制行为节奏的昼夜节律时钟反馈回路中。cry1敲除品系的雌性在胚胎和幼虫阶段均未能控制光周期滞育诱导,反映了在持续黑暗中饲养的野生型个体的滞育表型,表明B.moriCRY1作为光感受器有助于光周期时间测量。此外,在cry1/tim双敲除菌株中,幼虫期的光周期滞育诱导被废除,表明CRY1接收到的光信息被中继到昼夜节律时钟。总的来说,这项研究代表了cry1参与昆虫光周期的第一个证据,特别是在滞育诱导中。
    Most insects enter diapause, a state of physiological dormancy crucial for enduring harsh seasons, with photoperiod serving as the primary cue for its induction, ensuring proper seasonal timing of the process. Although the involvement of the circadian clock in the photoperiodic time measurement has been demonstrated through knockdown or knockout of clock genes, the involvement of clock gene cryptochrome 1 (cry1), which functions as a photoreceptor implicated in photoentrainment of the circadian clock across various insect species, remains unclear. In bivoltine strains of the silkworm, Bombyx mori, embryonic diapause is maternally controlled and affected by environmental conditions experienced by mother moths during embryonic and larval stages. Previous research highlighted the role of core clock genes, including period (per), timeless (tim), Clock (Clk) and cycle (cyc), in photoperiodic diapause induction in B. mori. In this study, we focused on the involvement of cry1 gene in B. mori photoperiodism. Phylogenetic analysis and conserved domain identification confirmed the presence of both Drosophila-type cry (cry1) and mammalian-type cry (cry2) genes in the B. mori genome, akin to other lepidopterans. Temporal expression analysis revealed higher cry1 gene expression during the photophase and lower expression during the scotophase, with knockouts of core clock genes (per, tim, Clk and cyc) disrupting this temporal expression pattern. Using CRISPR/Cas9-mediated genome editing, we established a cry1 knockout strain in p50T, a bivoltine strain exhibiting clear photoperiodism during both embryonic and larval stages. Although the wild-type strain displayed circadian rhythm in eclosion under continuous darkness, the cry1 knockout strain exhibited arrhythmic eclosion, implicating B. mori cry1 in the circadian clock feedback loop governing behavior rhythms. Females of the cry1 knockout strain failed to control photoperiodic diapause induction during both embryonic and larval stages, mirroring the diapause phenotype of the wild-type individuals reared under constant darkness, indicating that B. mori CRY1 contributes to photoperiodic time measurement as a photoreceptor. Furthermore, photoperiodic diapause induction during the larval stage was abolished in a cry1/tim double-knockout strain, suggesting that photic information received by CRY1 is relayed to the circadian clock. Overall, this study represents the first evidence of cry1 involvement in insect photoperiodism, specifically in diapause induction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人工照明的出现,特别是在晚上和晚上,极大地改变了最近可预测的日常明暗周期。改变光环境会扰乱生物钟,对情绪和认知产生负面影响。虽然青少年通常经历光/暗周期的慢性变化,我们对青少年大脑如何适应改变的光环境的理解仍然有限。这里,我们调查了青春期慢性光周期中断(LCD)的影响,将青春期小鼠暴露于19小时的光照和5小时的黑暗中,持续5天,并将12L:12D暴露于每周2天(LCD组),持续4周。我们表明,LCD暴露不会影响昼夜节律运动活动,但会损害记忆力并增加青少年小鼠的回避反应。时钟基因表达和神经元活动节律分析显示,LCD破坏了齿状回(DG)和内侧杏仁核(MeA)中的局部分子时钟和神经元活动,但在昼夜节律起搏器(SCN)中却没有。此外,我们表征了MeA的光反应性,并表明生长抑素神经元在青春期受到急性和慢性异常光暴露的影响。我们的研究提供了新的证据,强调了青春期发育过程中光环境改变对神经元生理和行为的潜在影响。
    The advent of artificial lighting, particularly during the evening and night, has significantly altered the predictable daily light and dark cycles in recent times. Altered light environments disrupt the biological clock and negatively impact mood and cognition. Although adolescents commonly experience chronic changes in light/dark cycles, our understanding of how the adolescents\' brain adapts to altered light environments remains limited. Here, we investigated the impact of chronic light cycle disruption (LCD) during adolescence, exposing adolescent mice to 19 h of light and 5 h of darkness for 5 days and 12 L:12D for 2 days per week (LCD group) for 4 weeks. We showed that LCD exposure did not affect circadian locomotor activity but impaired memory and increased avoidance response in adolescent mice. Clock gene expression and neuronal activity rhythms analysis revealed that LCD disrupted local molecular clock and neuronal activity in the dentate gyrus (DG) and in the medial amygdala (MeA) but not in the circadian pacemaker (SCN). In addition, we characterized the photoresponsiveness of the MeA and showed that somatostatin neurons are affected by acute and chronic aberrant light exposure during adolescence. Our research provides new evidence highlighting the potential consequences of altered light environments during pubertal development on neuronal physiology and behaviors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The bidirectional relationship between cerebral structures and the gastrointestinal tract involving the microbiota embraces the scientific concept of the microbiota-gut-brain axis. The gut microbiome plays an important role in many physiological and biochemical processes of the human body, in the immune response and maintenance of homeostasis, as well as in the regulation of circadian rhythms. There is a relationship between the higher prevalence of a number of neurological disorders, sleep disorders and changes in the intestinal microbiota, which actualizes the study of the complex mechanisms of such correlation for the development of new treatment and prevention strategies. Environmental factors associated with excessive light exposure can aggravate the gut dysbiosis of intestinal microflora, and as a result, lead to sleep disturbances. This review examines the integrative mechanisms of sleep regulation associated with the gut microbiota (the role of neurotransmitters, short-chain fatty acids, unconjugated bile acids, bacterial cell wall components, cytokines). Taking into account the influence of gut dysbiosis as a risk factor in the development of various diseases, the authors systematize key aspects and modern scientific data on the importance of microflora balance to ensure optimal interaction along the microbiota-gut-brain axis in the context of the regulatory role of the sleep-wake cycle and its disorders.
    Двустороння связь между церебральными структурами и желудочно-кишечным трактом с участием микробиоты охватывает научную концепцию оси мозг—кишечник—микробиом. Кишечный микробиом принимает важное участие во многих физиологических и биохимических процессах организма, в иммунном ответе и поддержании гомеостаза, а также в регуляции циркадианных ритмов. Отмечается взаимосвязь между более высокой распространенностью ряда неврологических расстройств, нарушений сна и изменениями в микробиоте кишечника, что актуализирует изучение сложных механизмов такой корреляции для разработки новых стратегий лечения и профилактики. Факторы внешней среды, связанные с избыточным световым воздействием, могут усугубить дисбиоз кишечной микрофлоры, и, как следствие, приводят к нарушениям сна. В настоящем обзоре рассматриваются интегративные механизмы регуляции сна, связанные с микробиотой кишечника (роль нейромедиаторов, короткоцепочечных жирных кислот, неконъюгированных желчных кислот, компонентов бактериальной клеточной стенки, цитокинов). Принимая во внимание влияние дисбиоза кишечника как фактора риска при развитии различных заболеваний, авторами систематизированы ключевые аспекты и современные научные данные о значении баланса микрофлоры для обеспечения оптимального взаимодействия по оси мозг—кишечник—микробиом в контексте с регулирующей ролью цикла сон—бодрствование и его нарушений.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号