Synthetic Lethal Mutations

合成致死突变
  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    1型神经纤维瘤病,一种由NF1种系突变引起的遗传性疾病,使患者容易发生肿瘤,包括皮肤和丛状神经纤维瘤(CNs和PNs),视神经胶质瘤,星形细胞瘤,幼年型粒单核细胞白血病,高级别神经胶质瘤,和恶性周围神经鞘瘤(MPNSTs),这是化疗和辐射抗性肉瘤,生存率低。NF1的丢失也发生在散发性肿瘤,如胶质母细胞瘤(GBM),黑色素瘤,乳房,卵巢,和肺癌。我们对合成致死性NF1损失的化合物进行了高通量筛选,确定了几条线索,包括小分子Y102。用Y102扰动自噬处理细胞,线粒体自噬,和溶酶体在NF1缺陷细胞中的定位。双重蛋白质组学方法鉴定了BORC复合物,这是溶酶体定位和贩运所必需的,作为Y102的潜在目标。使用siRNA的BORC复合物亚基的敲低概括了用Y102处理观察到的表型。我们的发现表明,BORC复合物可能是NF1缺陷型肿瘤的有希望的治疗靶标。
    Neurofibromatosis type 1, a genetic disorder caused by pathogenic germline variations in NF1, predisposes individuals to the development of tumors, including cutaneous and plexiform neurofibromas (CNs and PNs), optic gliomas, astrocytomas, juvenile myelomonocytic leukemia, high-grade gliomas and malignant peripheral nerve sheath tumors (MPNSTs), which are chemotherapy- and radiation-resistant sarcomas with poor survival. Loss of NF1 also occurs in sporadic tumors, such as glioblastoma (GBM), melanoma, breast, ovarian and lung cancers. We performed a high-throughput screen for compounds that were synthetic lethal with NF1 loss, which identified several leads, including the small molecule Y102. Treatment of cells with Y102 perturbed autophagy, mitophagy and lysosome positioning in NF1-deficient cells. A dual proteomics approach identified BLOC-one-related complex (BORC), which is required for lysosome positioning and trafficking, as a potential target of Y102. Knockdown of a BORC subunit using siRNA recapitulated the phenotypes observed with Y102 treatment. Our findings demonstrate that BORC might be a promising therapeutic target for NF1-deficient tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在乳腺癌中经常发现导致BRCA1/2缺陷的肿瘤抑制基因BRCA1和BRCA2的突变,卵巢,前列腺,胰腺,和其他癌症。聚(ADP-核糖)聚合酶(PARP)抑制剂(PARP)通过诱导合成致死性选择性杀死BRCA1/2缺陷的癌细胞,为靶向癌症治疗提供有效的生物标志物指导策略。然而,相当一部分携带BRCA1/2突变的癌症患者对PARPis没有反应,随着时间的推移,大多数患者会对PARPis产生耐药性,强调了临床上PARPi治疗的主要障碍。最近的研究表明,BRCA1/2缺陷细胞的特定功能缺陷的变化,特别是它们在抑制和保护单链DNA缺口方面的缺陷,有助于PARPi诱导的合成致死性的得失。这些发现不仅阐明了PARPis的作用机制,但也导致了解释PARPis如何选择性杀死BRCA缺陷的癌细胞的修正模型。此外,从这些研究中出现了PARPi敏感性和耐药性的新机制原理,为预测PARPi反应和设计克服PARPi抵抗的治疗提供潜在有用的指南。在这篇评论中,我们将讨论这些最新的研究,并将它们与PARPi诱导的合成致死性的经典观点结合起来,旨在刺激开发新的治疗策略以克服PARPi抵抗并改善PARPi治疗。
    Mutations in the tumor-suppressor genes BRCA1 and BRCA2 resulting in BRCA1/2 deficiency are frequently identified in breast, ovarian, prostate, pancreatic, and other cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cancer cells by inducing synthetic lethality, providing an effective biomarker-guided strategy for targeted cancer therapy. However, a substantial fraction of cancer patients carrying BRCA1/2 mutations do not respond to PARPis, and most patients develop resistance to PARPis over time, highlighting a major obstacle to PARPi therapy in the clinic. Recent studies have revealed that changes of specific functional defects of BRCA1/2-deficient cells, particularly their defects in suppressing and protecting single-stranded DNA gaps, contribute to the gain or loss of PARPi-induced synthetic lethality. These findings not only shed light on the mechanism of action of PARPis, but also lead to revised models that explain how PARPis selectively kill BRCA-deficient cancer cells. Furthermore, new mechanistic principles of PARPi sensitivity and resistance have emerged from these studies, generating potentially useful guidelines for predicting the PARPi response and design therapies for overcoming PARPi resistance. In this Review, we will discuss these recent studies and put them in context with the classic views of PARPi-induced synthetic lethality, aiming to stimulate the development of new therapeutic strategies to overcome PARPi resistance and improve PARPi therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管程序性细胞死亡1(PD-1)/程序性死亡配体1(PD-L1)抑制在肿瘤治疗中取得了成功,许多患者没有受益。该故障可归因于PD-L1的固有功能。我们进行了全基因组CRISPR合成致死性筛选,以系统地探索PD-L1在头颈部鳞状细胞癌(HNSCC)细胞中的内在功能。确定铁凋亡相关基因对于PD-L1缺陷细胞的生存力至关重要。在PD-L1基因敲除细胞中,基因和药理学诱导铁死亡加速细胞死亡,它们也更容易受到免疫原性铁中毒的影响。机械上,核PD-L1转录激活SOD2以维持氧化还原稳态。在具有较高PD-L1表达的HNSCC患者中观察到较低的活性氧(ROS)和铁死亡。我们的研究表明,PD-L1通过激活SOD2介导的抗氧化途径赋予HNSCC细胞铁凋亡抗性,提示靶向PD-L1的内在功能可以增强治疗效果.
    Despite the success of programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition in tumor therapy, many patients do not benefit. This failure may be attributed to the intrinsic functions of PD-L1. We perform a genome-wide CRISPR synthetic lethality screen to systematically explore the intrinsic functions of PD-L1 in head and neck squamous cell carcinoma (HNSCC) cells, identifying ferroptosis-related genes as essential for the viability of PD-L1-deficient cells. Genetic and pharmacological induction of ferroptosis accelerates cell death in PD-L1 knockout cells, which are also more susceptible to immunogenic ferroptosis. Mechanistically, nuclear PD-L1 transcriptionally activates SOD2 to maintain redox homeostasis. Lower reactive oxygen species (ROS) and ferroptosis are observed in patients with HNSCC who have higher PD-L1 expression. Our study illustrates that PD-L1 confers ferroptosis resistance in HNSCC cells by activating the SOD2-mediated antioxidant pathway, suggesting that targeting the intrinsic functions of PD-L1 could enhance therapeutic efficacy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,合成致死已被认为是抗癌治疗的坚实范例。越来越多的合成致命性靶标的发现,使合成致命性的使用得到了显著的扩展,远远超过用于治疗BRCA1/2缺陷肿瘤的聚(ADP-核糖)聚合酶抑制剂。特别是,DNA损伤反应中的分子靶标提供了迅速达到临床试验的抑制剂来源。这个观点集中在合成致死靶标及其抑制剂的最新进展,在DNA损伤反应内外,描述他们的设计和相关的治疗策略。最后我们将讨论这一前景广阔的研究领域当前面临的挑战和新的机遇,为了激发药物化学界的讨论,让合成杀伤力的调查充分发挥其潜力.
    In recent years, synthetic lethality has been recognized as a solid paradigm for anticancer therapies. The discovery of a growing number of synthetic lethal targets has led to a significant expansion in the use of synthetic lethality, far beyond poly(ADP-ribose) polymerase inhibitors used to treat BRCA1/2-defective tumors. In particular, molecular targets within DNA damage response have provided a source of inhibitors that have rapidly reached clinical trials. This Perspective focuses on the most recent progress in synthetic lethal targets and their inhibitors, within and beyond the DNA damage response, describing their design and associated therapeutic strategies. We will conclude by discussing the current challenges and new opportunities for this promising field of research, to stimulate discussion in the medicinal chemistry community, allowing the investigation of synthetic lethality to reach its full potential.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    头颈部鳞状细胞癌(HNSCC)癌基因组的综合基因组分析显示,在大多数HPV阴性的HNSCC病变中,p16INK4A(CDKN2A)的频繁丢失和细胞周期蛋白D1(CCND1)基因的扩增。然而,细胞周期蛋白依赖性激酶4和6(CDK4/6)抑制剂在临床上显示出适度的作用。PI3K/mTOR通路的异常激活在HNSCC中非常普遍,最近的临床试验显示mTOR抑制剂(mTORi)在新辅助和辅助治疗中具有良好的临床疗效,但在晚期HNSCC患者中无效。通过kinome宽的CRISPR/Cas9屏幕,我们确定细胞周期抑制是mTORi的合成致死靶标.mTORi和palbociclib的组合,CDK4/6特异性抑制剂,在体外和体内HNSCC来源的细胞中显示出强的协同作用。值得注意的是,我们发现palbociclib治疗后细胞周期蛋白E1(CCNE1)表达的适应性增加是对该CDK4/6抑制剂快速获得性耐药的基础.机械上,mTORi抑制eIF4G-CCNE1mRNA复合物的形成,随着mRNA翻译和CCNE1蛋白表达的减少。我们的发现表明mTORi恢复了对palbociclib的适应性抗性。这通过共同靶向mTOR和CDK4/6为HNSCC提供了多模式治疗选择,这反过来可能会阻止palbociclib耐药性的出现。
    The comprehensive genomic analysis of the head and neck squamous cell carcinoma (HNSCC) oncogenome revealed the frequent loss of p16INK4A (CDKN2A) and amplification of cyclin D1 genes in most human papillomavirus-negative HNSCC lesions. However, cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have shown modest effects in the clinic. The aberrant activation of the PI3K/mTOR pathway is highly prevalent in HNSCC, and recent clinical trials have shown promising clinical efficacy of mTOR inhibitors (mTORi) in the neoadjuvant and adjuvant settings but not in patients with advanced HNSCC. By implementing a kinome-wide CRISPR/Cas9 screen, we identified cell-cycle inhibition as a synthetic lethal target for mTORis. A combination of mTORi and palbociclib, a CDK4/6-specific inhibitor, showed strong synergism in HNSCC-derived cells in vitro and in vivo. Remarkably, we found that an adaptive increase in cyclin E1 (CCNE1) expression upon palbociclib treatment underlies the rapid acquired resistance to this CDK4/6 inhibitor. Mechanistically, mTORi inhibits the formation of eIF4G-CCNE1 mRNA complexes, with the consequent reduction in mRNA translation and CCNE1 protein expression. Our findings suggest that mTORi reverts the adaptive resistance to palbociclib. This provides a multimodal therapeutic option for HNSCC by cotargeting mTOR and CDK4/6, which in turn may halt the emergence of palbociclib resistance.
    UNASSIGNED: A kinome-wide CRISPR/Cas9 screen identified cell-cycle inhibition as a synthetic lethal target of mTORis. A combination of mTORi and palbociclib, a CDK4/6-specific inhibitor, showed strong synergistic effects in HNSCC. Mechanistically, mTORis inhibited palbociclib-induced increase in CCNE1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基因敲除研究表明,细菌基因组中的〜300个基因和酵母基因组中的〜1,100个基因不能在不丧失生存力的情况下被删除。这些单基因敲除实验没有解释负面的遗传相互作用,当两个或更多的基因可以各自删除而没有效果时,但它们的关节缺失是致命的.因此,大规模单基因缺失研究低估了与细胞存活相容的最小基因集的大小.在酿酒酵母中,基因对(2元组)的所有可能缺失的生存力,以及基因三联体(3元组)的一些缺失,已经过实验测试。从这些数据中估计酵母最小基因组的大小,我们首先确定,找到最小基因集的大小相当于找到杀伤力(超)图中的最小顶点覆盖,其中顶点是基因,(超)边连接其关节缺失致命的基因的k元组。使用Lovász-Johnson-Chvatal贪婪近似算法,我们计算了合成致死2元组图的最小顶点覆盖率为1,723个基因。接下来我们模拟了3元组中的遗传相互作用,从现有的三元组样本推断,并再次估计最小顶点覆盖。酵母中最小基因集的大小迅速接近整个基因组的大小,即使只考虑k小的k元组中的合成杀伤力。几项研究报告说,通过同时删除数百个基因,成功地减少了酵母和细菌基因组的实验,不会引起合成致死性.我们讨论这种明显矛盾的可能原因。重要信息我们如何估计足以使单细胞生物在丰富的培养基上存活的最小数量的基因?一种方法是一次删除一个基因,并计算有多少这样的缺失菌株无法生长。然而,单基因敲除数据不足,因为联合基因缺失可能导致负面的遗传相互作用,也被称为合成杀伤力。我们使用图论的技术从合成致死性的部分数据中估计最小酵母基因组的大小。当多个基因缺失时,潜在的合成致死相互作用的数量增长非常快,揭示了与酵母基因组约100个基因的实验性减少的矛盾对比,和数百种基因的细菌基因组。
    Gene knockout studies suggest that ~300 genes in a bacterial genome and ~1,100 genes in a yeast genome cannot be deleted without loss of viability. These single-gene knockout experiments do not account for negative genetic interactions, when two or more genes can each be deleted without effect, but their joint deletion is lethal. Thus, large-scale single-gene deletion studies underestimate the size of a minimal gene set compatible with cell survival. In yeast Saccharomyces cerevisiae, the viability of all possible deletions of gene pairs (2-tuples), and of some deletions of gene triplets (3-tuples), has been experimentally tested. To estimate the size of a yeast minimal genome from that data, we first established that finding the size of a minimal gene set is equivalent to finding the minimum vertex cover in the lethality (hyper)graph, where the vertices are genes and (hyper)edges connect k-tuples of genes whose joint deletion is lethal. Using the Lovász-Johnson-Chvatal greedy approximation algorithm, we computed the minimum vertex cover of the synthetic-lethal 2-tuples graph to be 1,723 genes. We next simulated the genetic interactions in 3-tuples, extrapolating from the existing triplet sample, and again estimated minimum vertex covers. The size of a minimal gene set in yeast rapidly approaches the size of the entire genome even when considering only synthetic lethalities in k-tuples with small k. In contrast, several studies reported successful experimental reductions of yeast and bacterial genomes by simultaneous deletions of hundreds of genes, without eliciting synthetic lethality. We discuss possible reasons for this apparent contradiction.IMPORTANCEHow can we estimate the smallest number of genes sufficient for a unicellular organism to survive on a rich medium? One approach is to remove genes one at a time and count how many of such deletion strains are unable to grow. However, the single-gene knockout data are insufficient, because joint gene deletions may result in negative genetic interactions, also known as synthetic lethality. We used a technique from graph theory to estimate the size of minimal yeast genome from partial data on synthetic lethality. The number of potential synthetic lethal interactions grows very fast when multiple genes are deleted, revealing a paradoxical contrast with the experimental reductions of yeast genome by ~100 genes, and of bacterial genomes by several hundreds of genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA损伤反应对于维持基因组完整性至关重要,并且通常在癌症发展中被破坏。PPM1D(蛋白磷酸酶Mg2/Mn2依赖性1D)是反应的主要负调节因子;在几种人类癌症中发现了PPM1D的功能获得突变和扩增,使其成为相关的药理靶标。这里,我们使用CRISPR/Cas9筛选来鉴定PPM1D的合成致死依赖性,揭示超氧化物歧化酶-1(SOD1)作为PPM1D突变细胞的潜在靶标。我们揭示了一种失调的氧化还原景观,其特征是PPM1D突变细胞中活性氧水平升高和对氧化应激的反应受损。总之,我们的结果证明SOD1在PPM1D突变的白血病细胞的存活中发挥了作用,并突出了针对PPM1D突变的癌症的新的潜在治疗策略.
    The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase Mg2+/Mn2+-dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacological target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate a role for SOD1 in the survival of PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:体细胞拷贝数改变是癌症的标志,为治疗开发提供了独特的机会。这里,我们专注于确定携带染色体8p缺失的肿瘤的特定漏洞。
    方法:我们开发并应用了癌症基因组图谱(TCGA)的综合分析,癌症依存关系图(DepMap),和癌细胞系百科全书,以确定染色体8p特异性漏洞。我们采用正交基因靶向策略,在体外和体内,包括短发夹RNA介导的基因敲除和CRISPR/Cas9介导的基因敲除以验证漏洞。
    结果:我们确定了SLC25A28(也称为MFRN2),作为携带染色体8p缺失的肿瘤的特殊脆弱性。我们证明了对MFRN2损失的脆弱性是由其模拟物的表达决定的,SLC25A37(也称为MFRN1),位于染色体8p上。根据它们作为线粒体铁转运蛋白的功能,MFRN1/2旁系同源蛋白缺乏严重损害线粒体呼吸,诱导铁-硫簇蛋白的全球消耗,导致DNA损伤和细胞死亡.MFRN2在缺乏MFRN1的肿瘤中的消耗导致生长受损,甚至在临床前小鼠异种移植实验中肿瘤根除,突出其治疗潜力。
    结论:我们的数据揭示了MFRN2作为8p染色体缺失癌症的治疗靶标,并将MFNR1作为MFRN2定向治疗的补充生物标志物。
    Somatic copy number alterations are a hallmark of cancer that offer unique opportunities for therapeutic exploitation. Here, we focused on the identification of specific vulnerabilities for tumors harboring chromosome 8p deletions.
    We developed and applied an integrative analysis of The Cancer Genome Atlas (TCGA), the Cancer Dependency Map (DepMap), and the Cancer Cell Line Encyclopedia to identify chromosome 8p-specific vulnerabilities. We employ orthogonal gene targeting strategies, both in vitro and in vivo, including short hairpin RNA-mediated gene knockdown and CRISPR/Cas9-mediated gene knockout to validate vulnerabilities.
    We identified SLC25A28 (also known as MFRN2), as a specific vulnerability for tumors harboring chromosome 8p deletions. We demonstrate that vulnerability towards MFRN2 loss is dictated by the expression of its paralog, SLC25A37 (also known as MFRN1), which resides on chromosome 8p. In line with their function as mitochondrial iron transporters, MFRN1/2 paralog protein deficiency profoundly impaired mitochondrial respiration, induced global depletion of iron-sulfur cluster proteins, and resulted in DNA-damage and cell death. MFRN2 depletion in MFRN1-deficient tumors led to impaired growth and even tumor eradication in preclinical mouse xenograft experiments, highlighting its therapeutic potential.
    Our data reveal MFRN2 as a therapeutic target of chromosome 8p deleted cancers and nominate MFNR1 as the complimentary biomarker for MFRN2-directed therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号