Synthetic Lethal Mutations

合成致死突变
  • 文章类型: Journal Article
    背景:泛素连接酶MDM2的高表达是许多肿瘤中p53失活的主要原因,使其成为有希望的治疗目标。然而,由于p53诱导的增强MDM2表达的反馈,MDM2抑制剂在临床试验中失败。这强调了迫切需要找到有效的适应性基因型或靶标组合。
    方法:使用TP53野生型癌细胞进行全KinomeCRISPR/Cas9敲除筛选以鉴定调节对MDM2抑制剂的反应的基因,并发现ULK1作为候选物。MTT细胞活力测定,进行流式细胞术和LDH测定以评估焦亡的激活以及将ULK1耗竭与p53激活相结合的合成致死效应。进行双荧光素酶报告基因测定和ChIP-qPCR以确认p53直接介导GSDME的转录并鉴定GSDME启动子中p53的结合区。构建ULK1敲除/过表达细胞以研究ULK1在体外和体内的功能作用。主要通过qPCR研究ULK1消耗激活GSMDE的机制,蛋白质印迹和ELISA。
    结果:通过高通量筛选,我们确定ULK1是MDM2抑制剂APG115的合成致死基因.确定ULK1的缺失显着增加了灵敏度,细胞经历典型的焦亡。机械上,p53通过直接介导诱导基础水平焦亡的GSDME转录来促进焦亡起始。此外,ULK1耗竭减少线粒体自噬,导致受损线粒体的积累和随后活性氧(ROS)的增加。这进而通过NLRP3-Caspase炎性信号传导轴切割并激活GSDME。分子级联使ULK1充当p53激活细胞介导的焦亡启动的关键调节因子。此外,在铂耐药肿瘤中线粒体自噬增强,ULK1耗竭/p53激活对这些肿瘤有协同致死作用,直接通过GSDME诱导焦亡。
    结论:我们的研究表明,ULK1缺乏可与MDM2抑制剂协同诱导焦亡。p53在激活GSDME转录中起直接作用,而ULK1缺乏引发ROS-NLRP3信号通路上调,导致GSDME裂解和激活。这些发现强调了p53在决定焦亡中的关键作用,并为p53恢复疗法的临床应用提供了新的途径。以及提出潜在的组合策略。
    BACKGROUND: High expression of ubiquitin ligase MDM2 is a primary cause of p53 inactivation in many tumors, making it a promising therapeutic target. However, MDM2 inhibitors have failed in clinical trials due to p53-induced feedback that enhances MDM2 expression. This underscores the urgent need to find an effective adaptive genotype or combination of targets.
    METHODS: Kinome-wide CRISPR/Cas9 knockout screen was performed to identify genes that modulate the response to MDM2 inhibitor using TP53 wild type cancer cells and found ULK1 as a candidate. The MTT cell viability assay, flow cytometry and LDH assay were conducted to evaluate the activation of pyroptosis and the synthetic lethality effects of combining ULK1 depletion with p53 activation. Dual-luciferase reporter assay and ChIP-qPCR were performed to confirm that p53 directly mediates the transcription of GSDME and to identify the binding region of p53 in the promoter of GSDME. ULK1 knockout / overexpression cells were constructed to investigate the functional role of ULK1 both in vitro and in vivo. The mechanism of ULK1 depletion to activate GSMDE was mainly investigated by qPCR, western blot and ELISA.
    RESULTS: By using high-throughput screening, we identified ULK1 as a synthetic lethal gene for the MDM2 inhibitor APG115. It was determined that deletion of ULK1 significantly increased the sensitivity, with cells undergoing typical pyroptosis. Mechanistically, p53 promote pyroptosis initiation by directly mediating GSDME transcription that induce basal-level pyroptosis. Moreover, ULK1 depletion reduces mitophagy, resulting in the accumulation of damaged mitochondria and subsequent increasing of reactive oxygen species (ROS). This in turn cleaves and activates GSDME via the NLRP3-Caspase inflammatory signaling axis. The molecular cascade makes ULK1 act as a crucial regulator of pyroptosis initiation mediated by p53 activation cells. Besides, mitophagy is enhanced in platinum-resistant tumors, and ULK1 depletion/p53 activation has a synergistic lethal effect on these tumors, inducing pyroptosis through GSDME directly.
    CONCLUSIONS: Our research demonstrates that ULK1 deficiency can synergize with MDM2 inhibitors to induce pyroptosis. p53 plays a direct role in activating GSDME transcription, while ULK1 deficiency triggers upregulation of the ROS-NLRP3 signaling pathway, leading to GSDME cleavage and activation. These findings underscore the pivotal role of p53 in determining pyroptosis and provide new avenues for the clinical application of p53 restoration therapies, as well as suggesting potential combination strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管程序性细胞死亡1(PD-1)/程序性死亡配体1(PD-L1)抑制在肿瘤治疗中取得了成功,许多患者没有受益。该故障可归因于PD-L1的固有功能。我们进行了全基因组CRISPR合成致死性筛选,以系统地探索PD-L1在头颈部鳞状细胞癌(HNSCC)细胞中的内在功能。确定铁凋亡相关基因对于PD-L1缺陷细胞的生存力至关重要。在PD-L1基因敲除细胞中,基因和药理学诱导铁死亡加速细胞死亡,它们也更容易受到免疫原性铁中毒的影响。机械上,核PD-L1转录激活SOD2以维持氧化还原稳态。在具有较高PD-L1表达的HNSCC患者中观察到较低的活性氧(ROS)和铁死亡。我们的研究表明,PD-L1通过激活SOD2介导的抗氧化途径赋予HNSCC细胞铁凋亡抗性,提示靶向PD-L1的内在功能可以增强治疗效果.
    Despite the success of programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition in tumor therapy, many patients do not benefit. This failure may be attributed to the intrinsic functions of PD-L1. We perform a genome-wide CRISPR synthetic lethality screen to systematically explore the intrinsic functions of PD-L1 in head and neck squamous cell carcinoma (HNSCC) cells, identifying ferroptosis-related genes as essential for the viability of PD-L1-deficient cells. Genetic and pharmacological induction of ferroptosis accelerates cell death in PD-L1 knockout cells, which are also more susceptible to immunogenic ferroptosis. Mechanistically, nuclear PD-L1 transcriptionally activates SOD2 to maintain redox homeostasis. Lower reactive oxygen species (ROS) and ferroptosis are observed in patients with HNSCC who have higher PD-L1 expression. Our study illustrates that PD-L1 confers ferroptosis resistance in HNSCC cells by activating the SOD2-mediated antioxidant pathway, suggesting that targeting the intrinsic functions of PD-L1 could enhance therapeutic efficacy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    合成致死性是癌症治疗的新模型。了解含BEN结构域蛋白4(BEND4)在胰腺癌中的作用及机制,本研究包括8个细胞系和总共492例胰腺肿瘤样本。甲基化特异性聚合酶链反应,CRISPR/Cas9,免疫沉淀测定,彗星试验,使用异种移植小鼠模型。BEND4是BEN域家族的新成员。BEND4的表达受启动子区甲基化调控。它在58.1%(176/303)的胰腺导管腺癌(PDAC)中甲基化,33.3%(14/42)的导管内乳头状黏液性肿瘤,31.0%(13/42)的胰腺神经内分泌肿瘤,14.3%(3/21)的黏液性囊性肿瘤,4.3%(2/47)实性假乳头状瘤,浆液性囊性肿瘤占2.7%(1/37)。BEND4甲基化与迟发性PDAC显著相关(>50年,P<0.01)和肿瘤分化(P<0.0001),在PDAC中,BEND4的甲基化是一个独立的不良预后标志物(P<0.01)。此外,BEND4在体外和体内发挥肿瘤抑制作用。机械上,BEND4通过与Ku80相互作用而涉及非同源末端连接信号并促进DNA损伤修复。BEND4的缺失增加了PDAC细胞对ATM抑制剂的敏感性。总的来说,本研究揭示了一种未表征的肿瘤抑制因子BEND4,并表明BEND4的甲基化可作为PDAC治疗中ATM抑制剂的潜在合成致死标志物.
    Synthetic lethality is a novel model for cancer therapy. To understand the function and mechanism of BEN domain-containing protein 4 (BEND4) in pancreatic cancer, eight cell lines and a total of 492 cases of pancreatic neoplasia samples were included in this study. Methylation-specific polymerase chain reaction, CRISPR/Cas9, immunoprecipitation assay, comet assay, and xenograft mouse model were used. BEND4 is a new member of the BEN domain family. The expression of BEND4 is regulated by promoter region methylation. It is methylated in 58.1% (176/303) of pancreatic ductal adenocarcinoma (PDAC), 33.3% (14/42) of intraductal papillary mucinous neoplasm, 31.0% (13/42) of pancreatic neuroendocrine tumor, 14.3% (3/21) of mucinous cystic neoplasm, 4.3% (2/47) of solid pseudopapillary neoplasm, and 2.7% (1/37) of serous cystic neoplasm. BEND4 methylation is significantly associated with late-onset PDAC (> 50 years, P < 0.01) and tumor differentiation (P < 0.0001), and methylation of BEND4 is an independent poor prognostic marker (P < 0.01) in PDAC. Furthermore, BEND4 plays tumor-suppressive roles in vitro and in vivo. Mechanistically, BEND4 involves non-homologous end joining signaling by interacting with Ku80 and promotes DNA damage repair. Loss of BEND4 increased the sensitivity of PDAC cells to ATM inhibitor. Collectively, the present study revealed an uncharacterized tumor suppressor BEND4 and indicated that methylation of BEND4 may serve as a potential synthetic lethal marker for ATM inhibitor in PDAC treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在癌症中,合成致死性是指药物诱导的一种基因失活和药物对癌细胞中另一种基因的抑制,仅导致癌细胞死亡;然而,这种效应在正常细胞中不存在,导致有针对性地杀死癌细胞。最近密集的表观遗传研究表明,在某些癌症中,异常的表观遗传变化比基因突变更频繁。最近,许多研究报道了涉及DNA损伤修复基因的各种甲基化合成致死组合,代谢途径基因,和在细胞模型中具有显著结果的旁系同源物,其中一些已经进入临床试验,结果很有希望。这篇综述系统地介绍了甲基化合成致死的优势,并描述了甲基化合成致死组合的致死机制,这些组合最近在细胞模型中取得了成功。此外,我们讨论了甲基化合成致死在靶向抗癌治疗中的未来机遇和挑战。
    In cancer, synthetic lethality refers to the drug-induced inactivation of one gene and the inhibition of another in cancer cells by a drug, resulting in the death of only cancer cells; however, this effect is not present in normal cells, leading to targeted killing of cancer cells. Recent intensive epigenetic research has revealed that aberrant epigenetic changes are more frequently observed than gene mutations in certain cancers. Recently, numerous studies have reported various methylation synthetic lethal combinations involving DNA damage repair genes, metabolic pathway genes, and paralogs with significant results in cellular models, some of which have already entered clinical trials with promising results. This review systematically introduces the advantages of methylation synthetic lethality and describes the lethal mechanisms of methylation synthetic lethal combinations that have recently demonstrated success in cellular models. Furthermore, we discuss the future opportunities and challenges of methylation synthetic lethality in targeted anticancer therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:剪接因子在骨髓增生异常综合征和急性髓系白血病患者中经常发生突变。最近的研究揭示了由剪接因子突变引起的会聚性分子缺陷,其中R环失调和由此产生的基因组不稳定被认为是疾病进展的促成因素。另一方面,了解突变细胞如何在异常R环形成和基因组不稳定时存活对于开发新的疗法至关重要。
    方法:进行免疫沉淀以鉴定与PARP1/聚-ADP-核糖基化相关的R-环。蛋白质印迹,免疫荧光,和流式细胞术测定用于测试细胞活力,细胞周期停滞,凋亡,以及PARP抑制剂处理后突变细胞中的ATM活化。产生Srsf2(P95H)敲入鼠造血细胞和MLL-AF9转化的白血病模型以研究PARP抑制剂作为血液恶性肿瘤疗法的潜力。
    结果:SRSF2中的致病突变激活PARP并升高蛋白质的总体多聚-ADP核糖基化水平,以响应R环失调。InAccording,与野生型对应物相比,突变细胞更容易受到PARP抑制剂的影响.值得注意的是,合成致死率在Srsf2(P95H)敲入鼠造血细胞和MLL-AF9白血病模型中得到进一步验证.
    结论:我们的研究结果表明,突变细胞拮抗了由PARP激活导致的R环破坏引起的基因组威胁,因此,PARP靶向治疗具有SRSF2突变的髓细胞癌成为一种有前景的治疗策略.
    BACKGROUND: Splicing factors are frequently mutated in patients with myelodysplastic syndromes and acute myeloid leukaemia. Recent studies have revealed convergent molecular defects caused by splicing factor mutations, among which R-loop dysregulation and resultant genome instability are suggested as contributing factors to disease progression. On the other hand, understanding how mutant cells survive upon aberrant R-loop formation and genome instability is essential for developing novel therapeutics.
    METHODS: The immunoprecipitation was performed to identify R-loops in association with PARP1/poly-ADP-ribosylation. The western blot, immunofluorescence, and flow cytometry assays were used to test the cell viability, cell cycle arrest, apoptosis, and ATM activation in mutant cells following the treatment of the PARP inhibitor. The Srsf2(P95H) knock-in murine hematopoietic cells and MLL-AF9 transformed leukaemia model were generated to investigate the potential of the PARP inhibitor as a therapy for haematological malignancies.
    RESULTS: The disease-causing mutations in SRSF2 activate PARP and elevate the overall poly-ADP-ribosylation levels of proteins in response to R-loop dysregulation. In accordance, mutant cells are more vulnerable to the PARP inhibitors in comparison to the wild-type counterpart. Notably, the synthetic lethality was further validated in the Srsf2(P95H) knock-in murine hematopoietic cell and MLL-AF9 leukaemia model.
    CONCLUSIONS: Our findings suggest that mutant cells antagonise the genome threat caused by R-loop disruption by PARP activation, thus making PARP targeting a promising therapeutic strategy for myeloid cancers with mutations in SRSF2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CREBBP的功能缺失突变,编码组蛋白乙酰转移酶,经常发生在B细胞恶性肿瘤中,强调CREBBP缺乏症是一个有吸引力的治疗靶点。使用已建立的等基因细胞模型,我们证明CREBBP缺陷型细胞选择性易受AURKA抑制。机械上,我们发现,协同靶向CREBBP和AURKA在转录和翻译后抑制MYC,诱导复制应激和细胞凋亡.抑制AURKA可显著降低CREBBP缺陷细胞的MYC蛋白水平,暗示依赖AURKA来维持MYC的稳定性。此外,体内研究表明,在CREBBP缺陷型细胞中,AURKA的药理学抑制可有效延缓肿瘤进展,并且在CREBBP缺陷型细胞中与CREBBP抑制剂具有协同作用.我们的研究揭示了CREBBP和AURKA之间的一种新型合成致死相互作用,表明靶向AURKA是一种潜在的治疗具有CREBBP失活突变的高风险B细胞恶性肿瘤的策略.
    Loss-of-function mutations in CREBBP, which encodes for a histone acetyltransferase, occur frequently in B-cell malignancies, highlighting CREBBP deficiency as an attractive therapeutic target. Using established isogenic cell models, we demonstrated that CREBBP-deficient cells are selectively vulnerable to AURKA inhibition. Mechanistically, we found that co-targeting CREBBP and AURKA suppressed MYC transcriptionally and post-translationally to induce replication stress and apoptosis. Inhibition of AURKA dramatically decreased MYC protein level in CREBBP-deficient cells, implying a dependency on AURKA to sustain MYC stability. Furthermore, in vivo studies showed that pharmacological inhibition of AURKA was efficacious in delaying tumor progression in CREBBP-deficient cells and was synergistic with CREBBP inhibitors in CREBBP-proficient cells. Our study sheds light on a novel synthetic lethal interaction between CREBBP and AURKA, indicating that targeting AURKA represents a potential therapeutic strategy for high-risk B-cell malignancies harboring CREBBP inactivating mutations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Meisoindigo(Mei)在慢性粒细胞白血病(CML)的治疗中早已得到认可。阐明其分子靶点和作用机制,我们开始设计和合成一系列Mei衍生的PROTACs。通过这一努力,VHL型PROTAC9b被鉴定为对SW620、SW480和K562细胞具有高度细胞毒性。采用基于DiaPASEF的定量蛋白质组学分析,结合广泛的验证试验,我们揭示了9b在SW620和SW480细胞中以泛素-蛋白酶体依赖性方式有效且选择性地降解ATM。9b诱导的选择性ATM降解促进DNA损伤反应级联,从而导致细胞周期停滞和细胞凋亡。这一开创性的发现使得ATM降解用于抗癌治疗的出现。值得注意的是,9b诱导的ATM降解协同地增强了ATR抑制剂AZD6738在体外和体内的功效。这项工作建立了ATR抑制剂在缺乏ATM的情况下的合成致死性诱导特性,从而为结直肠癌的创新疗法提供了新的途径。
    Meisoindigo (Mei) has long been recognized in chronic myeloid leukemia (CML) treatment. To elucidate its molecular target and mechanisms, we embarked on designing and synthesizing a series of Mei-derived PROTACs. Through this endeavor, VHL-type PROTAC 9b was identified to be highly cytotoxic against SW620, SW480, and K562 cells. Employing DiaPASEF-based quantitative proteomic analysis, in combination with extensive validation assays, we unveiled that 9b potently and selectively degraded ATM across SW620 and SW480 cells in a ubiquitin-proteasome-dependent manner. 9b-induced selective ATM degradation prompted DNA damage response cascades, thereby leading to the cell cycle arrest and cell apoptosis. This pioneering discovery renders the advent of ATM degradation for anti-cancer therapy. Notably, 9b-induced ATM degradation synergistically enhanced the efficacy of ATR inhibitor AZD6738 both in vitro and in vivo. This work establishes the synthetic lethality-inducing properties of ATR inhibitors in the ATM-deficient context, thereby providing new avenues to innovative therapies for colorectal cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    PTEN肿瘤抑制因子的缺失是结直肠癌(CRC)发展过程中的重要事件,并且是治疗开发的目标。这项研究报道,溴结构域和末端外基序(BET)是CRC中PTEN的合成致死伴侣。BET抑制(BETi)选择性诱导PTEN-/-CRC中的G1细胞周期停滞和凋亡。Further,BETi选择性和剂量依赖性地抑制小鼠和患者来源的类器官中PTEN-/-CRC肿瘤异种移植物的生长。机械上,PTEN缺陷型CRC细胞提高了在Thr145被AKT过度磷酸化的细胞质p21CIP1/WAF1的水平。BETi抑制PTEN缺陷型CRC细胞中的AKT激活,随后在Thr145处p21磷酸化减少,从而促进其核易位。此外,BETi抑制了MYC水平,这反过来又增加了细胞核中的总p21水平。磷酸化模拟p21突变体(T145D)的过表达显着挽救了BETi对PTEN缺陷性CRC的作用。这些结果表明BETi对p21具有双重作用:通过抑制MYC提高p21的水平,并通过抑制AKT将致癌(细胞质)p21转化为肿瘤抑制(核)p21。一起来看,这项研究确定了PTEN和BET之间的合成致死相互作用,并为具有PTEN丢失的CRC提供了潜在的可操作目标。
    Loss of PTEN tumor suppressor is an important event during colorectal cancer (CRC) development and is a target for therapeutic exploitation. This study reports that bromodomain and extra-terminal motif (BET) is a synthetic lethal partner of PTEN in CRC. BET inhibition (BETi) selectively induced G1 cell cycle arrest and apoptosis in PTEN-/- CRC. Further, BETi selectively and dose-dependently suppressed the growth of PTEN-/- CRC tumor xenografts in mice and patient-derived organoids. Mechanistically, PTEN-deficient CRC cells elevated the level of cytoplasmic p21CIP1/WAF1 that is hyper-phosphorylated at Thr145 by AKT. BETi suppressed AKT activation in PTEN-deficient CRC cells, followed by the reduction in p21 phosphorylation at Thr145, thereby promoting its nuclear translocation. In addition, BETi suppressed MYC level and this in turn increased the total p21 level in the nuclei. Over-expression of a phospho-mimetic p21 mutant (T145D) significantly rescued the BETi effect on PTEN-deficient CRC. These results suggest that BETi has a dual action on p21: elevating the level of p21 by inhibiting MYC and converting the oncogenic (cytoplasmic) p21 into the tumor-suppressive (nuclear) p21 by inhibiting AKT. Taken together, this study identified the synthetic lethal interaction between PTEN and BET, and provides a potential actionable target for CRC with PTEN loss.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管CRISPR介导的基因组编辑为癌症治疗带来了希望,肿瘤靶向不足和潜在的脱靶副作用阻碍了其预后.在这项研究中,我们提出了一种策略,使用冷冻休克的肺肿瘤细胞作为CRISPR-Cas9递送系统进行细胞周期蛋白依赖性激酶4(CDK4)基因编辑,在KRAS突变的非小细胞肺癌(NSCLC)中引发合成致死作用。通过快速的液氮冲击,我们有效地消除了肿瘤细胞的致病性,同时保留了它们的结构和表面受体活性。该递送系统使得负载的CRISPR-Cas9能够通过在肺毛细血管中的捕获和与内皮细胞的相互作用而有效地靶向肺。在携带NSCLC的小鼠模型中,肺部的药物积累增加了近四倍,与CRISPR-Cas9脂质体纳米颗粒施用相比,肿瘤内CDK4表达显著下调。此外,CRISPR-Cas9编辑介导的CDK4消融在KRAS突变型NSCLC中触发合成致死性并延长小鼠的生存期.
    Although CRISPR-mediated genome editing holds promise for cancer therapy, inadequate tumor targeting and potential off-target side effects hamper its outcomes. In this study, we present a strategy using cryo-shocked lung tumor cells as a CRISPR-Cas9 delivery system for cyclin-dependent kinase 4 (CDK4) gene editing, which initiates synthetic lethal in KRAS-mutant non-small cell lung cancer (NSCLC). By rapidly liquid nitrogen shocking, we effectively eliminate the pathogenicity of tumor cells while preserving their structure and surface receptor activity. This delivery system enables the loaded CRISPR-Cas9 to efficiently target to lung through the capture in pulmonary capillaries and interactions with endothelial cells. In a NSCLC-bearing mouse model, the drug accumulation is increased nearly fourfold in lung, and intratumoral CDK4 expression is substantially down-regulated compared to CRISPR-Cas9 lipofectamine nanoparticles administration. Furthermore, CRISPR-Cas9 editing-mediated CDK4 ablation triggers synthetic lethal in KRAS-mutant NSCLC and prolongs the survival of mice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号