Synthetic Lethal Mutations

合成致死突变
  • 文章类型: Journal Article
    背景:泛素连接酶MDM2的高表达是许多肿瘤中p53失活的主要原因,使其成为有希望的治疗目标。然而,由于p53诱导的增强MDM2表达的反馈,MDM2抑制剂在临床试验中失败。这强调了迫切需要找到有效的适应性基因型或靶标组合。
    方法:使用TP53野生型癌细胞进行全KinomeCRISPR/Cas9敲除筛选以鉴定调节对MDM2抑制剂的反应的基因,并发现ULK1作为候选物。MTT细胞活力测定,进行流式细胞术和LDH测定以评估焦亡的激活以及将ULK1耗竭与p53激活相结合的合成致死效应。进行双荧光素酶报告基因测定和ChIP-qPCR以确认p53直接介导GSDME的转录并鉴定GSDME启动子中p53的结合区。构建ULK1敲除/过表达细胞以研究ULK1在体外和体内的功能作用。主要通过qPCR研究ULK1消耗激活GSMDE的机制,蛋白质印迹和ELISA。
    结果:通过高通量筛选,我们确定ULK1是MDM2抑制剂APG115的合成致死基因.确定ULK1的缺失显着增加了灵敏度,细胞经历典型的焦亡。机械上,p53通过直接介导诱导基础水平焦亡的GSDME转录来促进焦亡起始。此外,ULK1耗竭减少线粒体自噬,导致受损线粒体的积累和随后活性氧(ROS)的增加。这进而通过NLRP3-Caspase炎性信号传导轴切割并激活GSDME。分子级联使ULK1充当p53激活细胞介导的焦亡启动的关键调节因子。此外,在铂耐药肿瘤中线粒体自噬增强,ULK1耗竭/p53激活对这些肿瘤有协同致死作用,直接通过GSDME诱导焦亡。
    结论:我们的研究表明,ULK1缺乏可与MDM2抑制剂协同诱导焦亡。p53在激活GSDME转录中起直接作用,而ULK1缺乏引发ROS-NLRP3信号通路上调,导致GSDME裂解和激活。这些发现强调了p53在决定焦亡中的关键作用,并为p53恢复疗法的临床应用提供了新的途径。以及提出潜在的组合策略。
    BACKGROUND: High expression of ubiquitin ligase MDM2 is a primary cause of p53 inactivation in many tumors, making it a promising therapeutic target. However, MDM2 inhibitors have failed in clinical trials due to p53-induced feedback that enhances MDM2 expression. This underscores the urgent need to find an effective adaptive genotype or combination of targets.
    METHODS: Kinome-wide CRISPR/Cas9 knockout screen was performed to identify genes that modulate the response to MDM2 inhibitor using TP53 wild type cancer cells and found ULK1 as a candidate. The MTT cell viability assay, flow cytometry and LDH assay were conducted to evaluate the activation of pyroptosis and the synthetic lethality effects of combining ULK1 depletion with p53 activation. Dual-luciferase reporter assay and ChIP-qPCR were performed to confirm that p53 directly mediates the transcription of GSDME and to identify the binding region of p53 in the promoter of GSDME. ULK1 knockout / overexpression cells were constructed to investigate the functional role of ULK1 both in vitro and in vivo. The mechanism of ULK1 depletion to activate GSMDE was mainly investigated by qPCR, western blot and ELISA.
    RESULTS: By using high-throughput screening, we identified ULK1 as a synthetic lethal gene for the MDM2 inhibitor APG115. It was determined that deletion of ULK1 significantly increased the sensitivity, with cells undergoing typical pyroptosis. Mechanistically, p53 promote pyroptosis initiation by directly mediating GSDME transcription that induce basal-level pyroptosis. Moreover, ULK1 depletion reduces mitophagy, resulting in the accumulation of damaged mitochondria and subsequent increasing of reactive oxygen species (ROS). This in turn cleaves and activates GSDME via the NLRP3-Caspase inflammatory signaling axis. The molecular cascade makes ULK1 act as a crucial regulator of pyroptosis initiation mediated by p53 activation cells. Besides, mitophagy is enhanced in platinum-resistant tumors, and ULK1 depletion/p53 activation has a synergistic lethal effect on these tumors, inducing pyroptosis through GSDME directly.
    CONCLUSIONS: Our research demonstrates that ULK1 deficiency can synergize with MDM2 inhibitors to induce pyroptosis. p53 plays a direct role in activating GSDME transcription, while ULK1 deficiency triggers upregulation of the ROS-NLRP3 signaling pathway, leading to GSDME cleavage and activation. These findings underscore the pivotal role of p53 in determining pyroptosis and provide new avenues for the clinical application of p53 restoration therapies, as well as suggesting potential combination strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    合成致死性(SL)已显示出在癌症中发现新靶标的巨大前景。CRISPR双敲除(CDKO)技术只能筛选数百个基因及其组合,但不是全基因组的。因此,在CDKO实验中,基因和基因对的选择非常需要良好的SL预测模型。然而,缺乏可扩展的SL属性会阻止SL交互对样本外数据的泛化,从而阻碍了建模工作。在本文中,我们认识到SL连通性是一种可扩展和可推广的SL属性。我们开发了一种新颖的两步多层编码器,用于单个样本特定的SL预测模型(MLEC-iSL),它首先预测SL连通性,然后预测SL交互。MLEC-iSL有三个编码器,即,基因,graph,和变压器编码器。MLEC-iSL在K562中实现了高SL预测性能(AUPR,0.73;AUC,0.72)和Jurkat(AUPR,0.73;AUC,0.71)细胞,而现有的方法没有超过0.62AUPR和AUC。在22Rv1细胞的CDKO实验中验证了MLEC-iSL的预测性能,在987个选定的基因对中产生46.8%的SL率。该筛选还揭示了凋亡和有丝分裂细胞死亡途径之间的SL依赖性。
    Synthetic lethality (SL) has shown great promise for the discovery of novel targets in cancer. CRISPR double-knockout (CDKO) technologies can only screen several hundred genes and their combinations, but not genome-wide. Therefore, good SL prediction models are highly needed for genes and gene pairs selection in CDKO experiments. However, lack of scalable SL properties prevents generalizability of SL interactions to out-of-sample data, thereby hindering modeling efforts. In this paper, we recognize that SL connectivity is a scalable and generalizable SL property. We develop a novel two-step multilayer encoder for individual sample-specific SL prediction model (MLEC-iSL), which predicts SL connectivity first and SL interactions subsequently. MLEC-iSL has three encoders, namely, gene, graph, and transformer encoders. MLEC-iSL achieves high SL prediction performance in K562 (AUPR, 0.73; AUC, 0.72) and Jurkat (AUPR, 0.73; AUC, 0.71) cells, while no existing methods exceed 0.62 AUPR and AUC. The prediction performance of MLEC-iSL is validated in a CDKO experiment in 22Rv1 cells, yielding a 46.8% SL rate among 987 selected gene pairs. The screen also reveals SL dependency between apoptosis and mitosis cell death pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:致病性BRCA1或BRCA2种系突变有助于遗传性乳腺,卵巢,前列腺,还有胰腺癌.矛盾的是,BRCA1或BRCA2(bBRCA1/2)的双等位基因失活是胚胎致死性的并降低细胞增殖。促进bBRCA1/2肿瘤发生的代偿机制尚不清楚。
    方法:我们确定了富含人bBRCA1/2肿瘤的复发性遗传改变,并通过实验验证了这些改变是否在细胞模型中改善了增殖。我们分析了来自TCGA和ICGC的bBRCA1/2乳腺癌和卵巢癌中的突变和拷贝数改变(CNA)。与缺乏同源重组缺陷证据的对照肿瘤相比,我们使用Fisher精确检验来鉴定富含bBRCA1/2肿瘤的CNA。在全基因组CRISPR/Cas9筛选中,通过基因表达及其对增殖的影响进一步筛选位于富含bBRCA1/2肿瘤的CNA区域的基因。通过体外克隆形成存活和功能测定对一组候选基因进行了功能验证,以验证它们在bBRCA1/2突变情况下对增殖的影响。
    结果:我们发现bBRCA1/2肿瘤的复发性大规模基因组缺失明显高于组织学匹配的对照(n=238个乳腺癌和卵巢癌的细胞带)。在删除的区域内,在全基因组CRISPR筛选中,我们鉴定出277个BRCA1相关基因和218个BRCA2相关基因在bBRCA1/2中表达减少,增殖增加,但在野生型细胞中则没有.通过克隆增殖实验对20个候选基因进行体外验证,验证了9个基因,包括RIC8A和ATMIN(ATM相互作用蛋白)。我们确定了RIC8A的损失,在bBRCA1/2肿瘤中经常发生,并且在BRCA1和BRCA2都丢失的情况下是合成可行的。此外,我们发现转移性同源重组缺陷型癌症在RIC8A中获得功能缺失突变.最后,我们发现RIC8A不能挽救同源重组缺陷,但可能会影响bBRCA1/2肿瘤的有丝分裂,可能导致微核形成增加。
    结论:这项研究提供了一种方法来解决肿瘤抑制悖论,方法是确定人类癌症中受到大规模CNAs影响的合成生存力相互作用和因果驱动基因。
    BACKGROUND: Pathogenic BRCA1 or BRCA2 germline mutations contribute to hereditary breast, ovarian, prostate, and pancreatic cancer. Paradoxically, bi-allelic inactivation of BRCA1 or BRCA2 (bBRCA1/2) is embryonically lethal and decreases cellular proliferation. The compensatory mechanisms that facilitate oncogenesis in bBRCA1/2 tumors remain unclear.
    METHODS: We identified recurrent genetic alterations enriched in human bBRCA1/2 tumors and experimentally validated if these improved proliferation in cellular models. We analyzed mutations and copy number alterations (CNAs) in bBRCA1/2 breast and ovarian cancer from the TCGA and ICGC. We used Fisher\'s exact test to identify CNAs enriched in bBRCA1/2 tumors compared to control tumors that lacked evidence of homologous recombination deficiency. Genes located in CNA regions enriched in bBRCA1/2 tumors were further screened by gene expression and their effects on proliferation in genome-wide CRISPR/Cas9 screens. A set of candidate genes was functionally validated with in vitro clonogenic survival and functional assays to validate their influence on proliferation in the setting of bBRCA1/2 mutations.
    RESULTS: We found that bBRCA1/2 tumors harbor recurrent large-scale genomic deletions significantly more frequently than histologically matched controls (n = 238 cytobands in breast and ovarian cancers). Within the deleted regions, we identified 277 BRCA1-related genes and 218 BRCA2-related genes that had reduced expression and increased proliferation in bBRCA1/2 but not in wild-type cells in genome-wide CRISPR screens. In vitro validation of 20 candidate genes with clonogenic proliferation assays validated 9 genes, including RIC8A and ATMIN (ATM-Interacting protein). We identified loss of RIC8A, which occurs frequently in both bBRCA1/2 tumors and is synthetically viable with loss of both BRCA1 and BRCA2. Furthermore, we found that metastatic homologous recombination deficient cancers acquire loss-of-function mutations in RIC8A. Lastly, we identified that RIC8A does not rescue homologous recombination deficiency but may influence mitosis in bBRCA1/2 tumors, potentially leading to increased micronuclei formation.
    CONCLUSIONS: This study provides a means to solve the tumor suppressor paradox by identifying synthetic viability interactions and causal driver genes affected by large-scale CNAs in human cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    1型神经纤维瘤病,一种由NF1种系突变引起的遗传性疾病,使患者容易发生肿瘤,包括皮肤和丛状神经纤维瘤(CNs和PNs),视神经胶质瘤,星形细胞瘤,幼年型粒单核细胞白血病,高级别神经胶质瘤,和恶性周围神经鞘瘤(MPNSTs),这是化疗和辐射抗性肉瘤,生存率低。NF1的丢失也发生在散发性肿瘤,如胶质母细胞瘤(GBM),黑色素瘤,乳房,卵巢,和肺癌。我们对合成致死性NF1损失的化合物进行了高通量筛选,确定了几条线索,包括小分子Y102。用Y102扰动自噬处理细胞,线粒体自噬,和溶酶体在NF1缺陷细胞中的定位。双重蛋白质组学方法鉴定了BORC复合物,这是溶酶体定位和贩运所必需的,作为Y102的潜在目标。使用siRNA的BORC复合物亚基的敲低概括了用Y102处理观察到的表型。我们的发现表明,BORC复合物可能是NF1缺陷型肿瘤的有希望的治疗靶标。
    Neurofibromatosis type 1, a genetic disorder caused by pathogenic germline variations in NF1, predisposes individuals to the development of tumors, including cutaneous and plexiform neurofibromas (CNs and PNs), optic gliomas, astrocytomas, juvenile myelomonocytic leukemia, high-grade gliomas and malignant peripheral nerve sheath tumors (MPNSTs), which are chemotherapy- and radiation-resistant sarcomas with poor survival. Loss of NF1 also occurs in sporadic tumors, such as glioblastoma (GBM), melanoma, breast, ovarian and lung cancers. We performed a high-throughput screen for compounds that were synthetic lethal with NF1 loss, which identified several leads, including the small molecule Y102. Treatment of cells with Y102 perturbed autophagy, mitophagy and lysosome positioning in NF1-deficient cells. A dual proteomics approach identified BLOC-one-related complex (BORC), which is required for lysosome positioning and trafficking, as a potential target of Y102. Knockdown of a BORC subunit using siRNA recapitulated the phenotypes observed with Y102 treatment. Our findings demonstrate that BORC might be a promising therapeutic target for NF1-deficient tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癌症依赖性图加速了肿瘤弱点的发现,当可以转化为患者时,这些弱点可以被用作药物靶标。癌症基因组图谱(TCGA)是详细说明遗传的“图谱”汇编,在癌症发病过程中发生的表观遗传和分子变化,然而,它缺乏一个依赖图谱来翻译患者肿瘤的基因本质。这里,我们使用机器学习来构建患者肿瘤的平移依赖图,确定了预测药物反应和疾病结果的肿瘤脆弱性。使用类似的方法来映射健康组织中的基因耐受性,以利用最佳治疗窗口来优先考虑肿瘤易损性。实验测试了一部分患者可翻译的合成致死率,包括PAPSS1/PAPSS12和CNOT7/CNOT78,在体外和体内进行了验证。值得注意的是,PAPSS1合成致死率是由PTEN附带删除PAPSS2驱动的,并与患者生存率相关。最后,平移依赖关系图作为基于Web的应用程序提供,用于探索肿瘤漏洞。
    Cancer dependency maps have accelerated the discovery of tumor vulnerabilities that can be exploited as drug targets when translatable to patients. The Cancer Genome Atlas (TCGA) is a compendium of \'maps\' detailing the genetic, epigenetic and molecular changes that occur during the pathogenesis of cancer, yet it lacks a dependency map to translate gene essentiality in patient tumors. Here, we used machine learning to build translational dependency maps for patient tumors, which identified tumor vulnerabilities that predict drug responses and disease outcomes. A similar approach was used to map gene tolerability in healthy tissues to prioritize tumor vulnerabilities with the best therapeutic windows. A subset of patient-translatable synthetic lethalities were experimentally tested, including PAPSS1/PAPSS12 and CNOT7/CNOT78, which were validated in vitro and in vivo. Notably, PAPSS1 synthetic lethality was driven by collateral deletion of PAPSS2 with PTEN and was correlated with patient survival. Finally, the translational dependency map is provided as a web-based application for exploring tumor vulnerabilities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在乳腺癌中经常发现导致BRCA1/2缺陷的肿瘤抑制基因BRCA1和BRCA2的突变,卵巢,前列腺,胰腺,和其他癌症。聚(ADP-核糖)聚合酶(PARP)抑制剂(PARP)通过诱导合成致死性选择性杀死BRCA1/2缺陷的癌细胞,为靶向癌症治疗提供有效的生物标志物指导策略。然而,相当一部分携带BRCA1/2突变的癌症患者对PARPis没有反应,随着时间的推移,大多数患者会对PARPis产生耐药性,强调了临床上PARPi治疗的主要障碍。最近的研究表明,BRCA1/2缺陷细胞的特定功能缺陷的变化,特别是它们在抑制和保护单链DNA缺口方面的缺陷,有助于PARPi诱导的合成致死性的得失。这些发现不仅阐明了PARPis的作用机制,但也导致了解释PARPis如何选择性杀死BRCA缺陷的癌细胞的修正模型。此外,从这些研究中出现了PARPi敏感性和耐药性的新机制原理,为预测PARPi反应和设计克服PARPi抵抗的治疗提供潜在有用的指南。在这篇评论中,我们将讨论这些最新的研究,并将它们与PARPi诱导的合成致死性的经典观点结合起来,旨在刺激开发新的治疗策略以克服PARPi抵抗并改善PARPi治疗。
    Mutations in the tumor-suppressor genes BRCA1 and BRCA2 resulting in BRCA1/2 deficiency are frequently identified in breast, ovarian, prostate, pancreatic, and other cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cancer cells by inducing synthetic lethality, providing an effective biomarker-guided strategy for targeted cancer therapy. However, a substantial fraction of cancer patients carrying BRCA1/2 mutations do not respond to PARPis, and most patients develop resistance to PARPis over time, highlighting a major obstacle to PARPi therapy in the clinic. Recent studies have revealed that changes of specific functional defects of BRCA1/2-deficient cells, particularly their defects in suppressing and protecting single-stranded DNA gaps, contribute to the gain or loss of PARPi-induced synthetic lethality. These findings not only shed light on the mechanism of action of PARPis, but also lead to revised models that explain how PARPis selectively kill BRCA-deficient cancer cells. Furthermore, new mechanistic principles of PARPi sensitivity and resistance have emerged from these studies, generating potentially useful guidelines for predicting the PARPi response and design therapies for overcoming PARPi resistance. In this Review, we will discuss these recent studies and put them in context with the classic views of PARPi-induced synthetic lethality, aiming to stimulate the development of new therapeutic strategies to overcome PARPi resistance and improve PARPi therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:PARP抑制剂(PARPi)对同源重组修复(HRR)缺陷(HRD)癌症有效。为了(重新)使HRR熟练(HRP)肿瘤对PARPi的敏感性,正在探索与其他药物的组合。我们的目的是确定细胞周期检查点激酶ATR抑制剂对PARPi敏感的机制。CHK1和WEE1。
    方法:使用一组HRD和HRP细胞(包括匹配的BRCA1或2突变体和校正对)和卵巢癌腹水细胞。Rucaparib(PARPi)诱导的复制应激(RS)和HRR(γH2AX和RAD51病灶的免疫荧光显微镜,分别),细胞周期变化(流式细胞术),激活ATR,确定CHK1和WEE1(分别用于pCHK1S345,pCHK1S296和pCDK1Y15的蛋白质印迹)和细胞毒性(集落形成测定),随后调查了ATR抑制剂(VE-821,1µM)对所有这些参数的影响,CHK1(PF-477736,50nM)和WEE1(MK-1775,100nM)。
    结果:Rucaparib诱导RS(3至10倍),S相积累(2倍)和ATR,CHK1和WEE1激活(高达3倍),VE-821,PF-477736和MK-1775抑制了它们的靶标,并消除了这些rucaparib诱导的HRP和HRD细胞的细胞周期变化。Rucaparib仅在HRP细胞中激活HRR,并且对HRD细胞的细胞毒性更大(60-1,000x)。VE-821,PF-477736和MK-1775阻断HRR并使HRP敏感,但对HRD细胞和原发性卵巢腹水不敏感。
    结论:我们的数据表明,而不是通过废除细胞周期检查点来发挥作用,ATR,CHK1和WEE1抑制剂引起HRD表型,因此“诱导合成致死性”与PARPi。
    OBJECTIVE: PARP inhibitors (PARPi) are effective in homologous recombination repair (HRR) defective (HRD) cancers. To (re)sensitise HRR proficient (HRP) tumours to PARPi combinations with other drugs are being explored. Our aim was to determine the mechanism underpinning the sensitisation to PARPi by inhibitors of cell cycle checkpoint kinases ATR, CHK1 and WEE1.
    METHODS: A panel of HRD and HRP cells (including matched BRCA1 or 2 mutant and corrected pairs) and ovarian cancer ascites cells were used. Rucaparib (PARPi) induced replication stress (RS) and HRR (immunofluorescence microscopy for γH2AX and RAD51 foci, respectively), cell cycle changes (flow cytometry), activation of ATR, CHK1 and WEE1 (Western Blot for pCHK1S345, pCHK1S296 and pCDK1Y15, respectively) and cytotoxicity (colony formation assay) was determined, followed by investigations of the impact on all of these parameters by inhibitors of ATR (VE-821, 1 µM), CHK1 (PF-477736, 50 nM) and WEE1 (MK-1775, 100 nM).
    RESULTS: Rucaparib induced RS (3 to10-fold), S-phase accumulation (2-fold) and ATR, CHK1 and WEE1 activation (up to 3-fold), and VE-821, PF-477736 and MK-1775 inhibited their targets and abrogated these rucaparib-induced cell cycle changes in HRP and HRD cells. Rucaparib activated HRR in HRP cells only and was (60-1,000x) more cytotoxic to HRD cells. VE-821, PF-477736 and MK-1775 blocked HRR and sensitised HRP but not HRD cells and primary ovarian ascites to rucaparib.
    CONCLUSIONS: Our data indicate that, rather than acting via abrogation of cell cycle checkpoints, ATR, CHK1 and WEE1 inhibitors cause an HRD phenotype and hence \"induced synthetic lethality\" with PARPi.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    近年来,合成致死已被认为是抗癌治疗的坚实范例。越来越多的合成致命性靶标的发现,使合成致命性的使用得到了显著的扩展,远远超过用于治疗BRCA1/2缺陷肿瘤的聚(ADP-核糖)聚合酶抑制剂。特别是,DNA损伤反应中的分子靶标提供了迅速达到临床试验的抑制剂来源。这个观点集中在合成致死靶标及其抑制剂的最新进展,在DNA损伤反应内外,描述他们的设计和相关的治疗策略。最后我们将讨论这一前景广阔的研究领域当前面临的挑战和新的机遇,为了激发药物化学界的讨论,让合成杀伤力的调查充分发挥其潜力.
    In recent years, synthetic lethality has been recognized as a solid paradigm for anticancer therapies. The discovery of a growing number of synthetic lethal targets has led to a significant expansion in the use of synthetic lethality, far beyond poly(ADP-ribose) polymerase inhibitors used to treat BRCA1/2-defective tumors. In particular, molecular targets within DNA damage response have provided a source of inhibitors that have rapidly reached clinical trials. This Perspective focuses on the most recent progress in synthetic lethal targets and their inhibitors, within and beyond the DNA damage response, describing their design and associated therapeutic strategies. We will conclude by discussing the current challenges and new opportunities for this promising field of research, to stimulate discussion in the medicinal chemistry community, allowing the investigation of synthetic lethality to reach its full potential.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    头颈部鳞状细胞癌(HNSCC)癌基因组的综合基因组分析显示,在大多数HPV阴性的HNSCC病变中,p16INK4A(CDKN2A)的频繁丢失和细胞周期蛋白D1(CCND1)基因的扩增。然而,细胞周期蛋白依赖性激酶4和6(CDK4/6)抑制剂在临床上显示出适度的作用。PI3K/mTOR通路的异常激活在HNSCC中非常普遍,最近的临床试验显示mTOR抑制剂(mTORi)在新辅助和辅助治疗中具有良好的临床疗效,但在晚期HNSCC患者中无效。通过kinome宽的CRISPR/Cas9屏幕,我们确定细胞周期抑制是mTORi的合成致死靶标.mTORi和palbociclib的组合,CDK4/6特异性抑制剂,在体外和体内HNSCC来源的细胞中显示出强的协同作用。值得注意的是,我们发现palbociclib治疗后细胞周期蛋白E1(CCNE1)表达的适应性增加是对该CDK4/6抑制剂快速获得性耐药的基础.机械上,mTORi抑制eIF4G-CCNE1mRNA复合物的形成,随着mRNA翻译和CCNE1蛋白表达的减少。我们的发现表明mTORi恢复了对palbociclib的适应性抗性。这通过共同靶向mTOR和CDK4/6为HNSCC提供了多模式治疗选择,这反过来可能会阻止palbociclib耐药性的出现。
    The comprehensive genomic analysis of the head and neck squamous cell carcinoma (HNSCC) oncogenome revealed the frequent loss of p16INK4A (CDKN2A) and amplification of cyclin D1 genes in most human papillomavirus-negative HNSCC lesions. However, cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have shown modest effects in the clinic. The aberrant activation of the PI3K/mTOR pathway is highly prevalent in HNSCC, and recent clinical trials have shown promising clinical efficacy of mTOR inhibitors (mTORi) in the neoadjuvant and adjuvant settings but not in patients with advanced HNSCC. By implementing a kinome-wide CRISPR/Cas9 screen, we identified cell-cycle inhibition as a synthetic lethal target for mTORis. A combination of mTORi and palbociclib, a CDK4/6-specific inhibitor, showed strong synergism in HNSCC-derived cells in vitro and in vivo. Remarkably, we found that an adaptive increase in cyclin E1 (CCNE1) expression upon palbociclib treatment underlies the rapid acquired resistance to this CDK4/6 inhibitor. Mechanistically, mTORi inhibits the formation of eIF4G-CCNE1 mRNA complexes, with the consequent reduction in mRNA translation and CCNE1 protein expression. Our findings suggest that mTORi reverts the adaptive resistance to palbociclib. This provides a multimodal therapeutic option for HNSCC by cotargeting mTOR and CDK4/6, which in turn may halt the emergence of palbociclib resistance.
    UNASSIGNED: A kinome-wide CRISPR/Cas9 screen identified cell-cycle inhibition as a synthetic lethal target of mTORis. A combination of mTORi and palbociclib, a CDK4/6-specific inhibitor, showed strong synergistic effects in HNSCC. Mechanistically, mTORis inhibited palbociclib-induced increase in CCNE1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号