Radiation Chimera

  • 文章类型: Journal Article
    Slit2在各种癌症中发挥抗肿瘤作用;然而,潜在的机制,尤其是它在调节免疫中的作用,尤其是在骨髓壁龛中,系统仍然未知。阐明巨噬细胞在肿瘤进展中的行为可以潜在地改善免疫疗法。使用自发性乳腺肿瘤病毒启动子-多瘤中T抗原(PyMT)乳腺癌小鼠模型,我们观察到Slit2在体外分化后增加了骨髓中抗肿瘤M1巨噬细胞的丰度。此外,用Slit2处理的骨髓同种异体移植物注射的骨髓切除的PyMT小鼠显示肿瘤生长明显减少,增强了M1巨噬细胞在其肿瘤基质中的募集。机制研究表明,Slit2显着增强了骨髓源性巨噬细胞(BMDM)的糖酵解并减少了脂肪酸氧化。Slit2治疗还改变了从健康人血液中分离的巨噬细胞中的线粒体呼吸代谢物,这些巨噬细胞用乳腺癌患者的血浆进行了治疗。总的来说,这项研究,第一次,显示Slit2通过调节免疫代谢增加BMDM向抗肿瘤表型的极化。此外,这项研究提供的证据表明,可溶性Slit2可以作为新的治疗策略,以增强抗肿瘤免疫应答。
    Slit2 exerts antitumor effects in various cancers; however, the underlying mechanism, especially its role in regulating the immune, especially in the bone marrow niche, system is still unknown. Elucidating the behavior of macrophages in tumor progression can potentially improve immunotherapy. Using a spontaneous mammary tumor virus promoter-polyoma middle T antigen (PyMT) breast cancer mouse model, we observed that Slit2 increased the abundance of antitumor M1 macrophage in the bone marrow upon differentiation in vitro. Moreover, myeloablated PyMT mice injected with Slit2-treated bone marrow allografts showed a marked reduction in tumor growth, with enhanced recruitment of M1 macrophage in their tumor stroma. Mechanistic studies revealed that Slit2 significantly enhanced glycolysis and reduced fatty acid oxidation in bone marrow-derived macrophages (BMDMs). Slit2 treatment also altered mitochondrial respiration metabolites in macrophages isolated from healthy human blood that were treated with plasma from breast cancer patients. Overall, this study, for the first time, shows that Slit2 increases BMDM polarization toward antitumor phenotype by modulating immune-metabolism. Furthermore, this study provides evidence that soluble Slit2 could be developed as novel therapeutic strategy to enhance antitumor immune response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    NK cells are critical innate immune cells that target the tumor cells and cancer-initiating cells and clear viruses by producing cytokines and cytotoxic granules. However, the role of the purinergic receptor P2Y6 in the NK cells remains largely unknown. In this study, we discovered that the expression of P2Y6 was decreased upon the activation of the NK cells. Moreover, in the P2Y6-deficient mice, we found that the deficiency of P2Y6 promoted the development of the NK precursor cells into immature NK and mature NK cells. We also found that the P2Y6 deficiency increased, but the P2Y6 receptor agonist UDP or UDP analog 5-OMe-UDP decreased the production of IFN-γ in the activated NK cells. Furthermore, we demonstrated that the P2Y6-deficient NK cells exhibited stronger cytotoxicity in vitro and antimetastatic effects in vivo. Mechanistically, P2Y6 deletion promoted the expression of T-bet (encoded by Tbx21), with or without the stimulation of IL-15. In the absence of P2Y6, the levels of phospho-serine/threonine kinase and pS6 in the NK cells were significantly increased upon the stimulation of IL-15. Collectively, we demonstrated that the P2Y6 receptor acted as a negative regulator of the NK cell function and inhibited the maturation and antitumor activities of the NK cells. Therefore, inhibition of the P2Y6 receptor increases the antitumor activities of the NK cells, which may aid in the design of innovative strategies to improve NK cell-based cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The generation of radiation chimeras allows researchers to substitute the hematopoietic system of a mouse with that of one or more donors. A suspension of hematopoietic stem cells (HSCs) is prepared from the bone marrow (BM) or the fetal liver (FL) of a donor mouse and adoptively transferred into an irradiated recipient. Within days, the donor\'s HSCs will engraft, and their progeny will quickly replace the blood cells of the recipient. This simple tool, together with the large availability of genetically modified mouse lines, can be harnessed to manipulate and study various aspects of blood cell biology in vivo. We present here protocols to generate three types of radiation chimera: (1) BM chimeras, which can assist in determining whether the origin of a genetically based phenotype is the hematopoietic or radio-resistant compartment and which are also conducive for studying the ecology of blood cells and for manipulating the environment hematopoietic cells live; (2) FL chimeras, which allow the study of hematopoietic systems from animals that carry genetic modifications incompatible with postnatal life; and (3) mixed BM chimeras, in which the hematopoietic system comprises blood cells of two different genotypes. Mixed BM chimeras can be used to identify genes that affect hematopoietic cell fitness and to establish whether secreted factors mediate a phenotype of interest. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Generation of bone marrow chimera Basic Protocol 2: Generation of fetal liver chimera Basic Protocol 3: Generation of mixed bone marrow chimera Support Protocol 1: Isolation of bone marrow cells Support Protocol 2: Cell counting by flow cytometry Support Protocol 3: Assessment of chimerism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Myeloproliferative neoplasms (MPNs) are characterized by a pathologic expansion of myeloid lineages. Mutations in JAK2, CALR and MPL genes are known to be three prominent MPN disease drivers. Mutant CALR (mutCALR) is an oncoprotein that interacts with and activates the thrombopoietin receptor (MPL) and represents an attractive target for targeted therapy of CALR mutated MPN. We generated a transgenic murine model with conditional expression of the human mutant exon 9 (del52) from the murine endogenous Calr locus. These mice develop essential thrombocythemia like phenotype with marked thrombocytosis and megakaryocytosis. The disease exacerbates with age showing prominent signs of splenomegaly and anemia. The disease is transplantable and mutCALR stem cells show proliferative advantage when compared to wild type stem cells. Transcriptome profiling of hematopoietic stem cells revealed oncogenic and inflammatory gene expression signatures. To demonstrate the applicability of the transgenic animals for immunotherapy, we treated mice with monoclonal antibody raised against the human mutCALR. The antibody treatment lowered platelet and stem cell counts in mutant mice. Secretion of mutCALR did not constitute a significant antibody sink. This animal model not only recapitulates human MPN but also serves as a relevant model for testing immunotherapeutic strategies targeting epitopes of the human mutCALR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comparative Study
    Murine bone marrow (BM) chimeras are a versatile and valuable research tool in stem cell and immunology research. Engraftment of donor BM requires myeloablative conditioning of recipients. The most common method used for mice is ionizing radiation, and Cesium-137 gamma irradiators have been preferred. However, radioactive sources are being out-phased worldwide due to safety concerns, and are most commonly replaced by X-ray sources, creating a need to compare these sources regarding efficiency and potential side effects. Prior research has proven both methods capable of efficiently ablating BM cells and splenocytes in mice, but with moderate differences in resultant donor chimerism across tissues. Here, we compared Cesium-137 to 350 keV X-ray irradiation with respect to immune reconstitution, assaying complete, syngeneic BM chimeras and a mixed chimera model of autoimmune disease. Based on dose titration, we find that both gamma and X-ray irradiation can facilitate a near-complete donor chimerism. Mice subjected to 13 Gy Cesium-137 irradiation and reconstituted with syngeneic donor marrow were viable and displayed high donor chimerism, whereas X-ray irradiated mice all succumbed at 13 Gy. However, a similar degree of chimerism as that obtained following 13 Gy gamma irradiation could be achieved by 11 Gy X-ray irradiation, about 85% relative to the gamma dose. In the mixed chimera model of autoimmune disease, we found that a similar autoimmune phenotype could be achieved irrespective of irradiation source used. It is thus possible to compare data generated, regardless of the irradiation source, but every setup and application likely needs individual optimization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    进行这项研究以确定c-Myc对造血的剂量效应及其在介导造血干细胞(HSC)和骨髓利基细胞中的Wnt/β-catenin途径中的独特作用。c-Myc单倍体功能不全通过抑制HSC自我更新和静止以及通过促进细胞凋亡而导致无效造血。我们已经确定了Nr4a1,Nr4a2和Jmjd3,它们对于维护HSC功能至关重要,作为HSC中以前未识别的c-Myc下游靶标。c-Myc直接与Nr4a1,Nr4a2和Jmjd3的启动子区结合并调节其表达。我们的结果表明,Nr4a1和Nr4a2介导c-Myc调节HSC静止的功能,而所有3个基因都有助于c-Myc在维持HSC存活中的功能。腺瘤性结肠息肉病(Apc)是Wnt/β-连环蛋白途径的负调节因子。我们已经提供了第一个证据,表明Apc单倍体不足通过促进骨髓内皮细胞中IL6的分泌来诱导红系谱系分化的阻断。我们发现c-Myc单倍体不足未能在体内挽救Apc缺陷型HSC的功能缺陷,但足以防止Apc杂合小鼠严重贫血的发展并显着延长这些小鼠的生存期。此外,我们发现c-Myc介导的Apc损失诱导内皮细胞分泌IL6,c-Myc单倍体不足逆转了Apc缺陷内皮细胞对红细胞分化的负面影响。我们的研究表明,c-Myc在介导Apc在造血中的功能方面具有上下文依赖的作用。
    This study was conducted to determine the dosage effect of c-Myc on hematopoiesis and its distinct role in mediating the Wnt/β-catenin pathway in hematopoietic stem cell (HSC) and bone marrow niche cells. c-Myc haploinsufficiency led to ineffective hematopoiesis by inhibiting HSC self-renewal and quiescence and by promoting apoptosis. We have identified Nr4a1, Nr4a2, and Jmjd3, which are critical for the maintenance of HSC functions, as previously unrecognized downstream targets of c-Myc in HSCs. c-Myc directly binds to the promoter regions of Nr4a1, Nr4a2, and Jmjd3 and regulates their expression. Our results revealed that Nr4a1 and Nr4a2 mediates the function of c-Myc in regulating HSC quiescence, whereas all 3 genes contribute to the function of c-Myc in the maintenance of HSC survival. Adenomatous polyposis coli (Apc) is a negative regulator of the Wnt/β-catenin pathway. We have provided the first evidence that Apc haploinsufficiency induces a blockage of erythroid lineage differentiation through promoting secretion of IL6 in bone marrow endothelial cells. We found that c-Myc haploinsufficiency failed to rescue defective function of Apc-deficient HSCs in vivo but it was sufficient to prevent the development of severe anemia in Apc-heterozygous mice and to significantly prolong the survival of those mice. Furthermore, we showed that c-Myc-mediated Apc loss induced IL6 secretion in endothelial cells, and c-Myc haploinsufficiency reversed the negative effect of Apc-deficient endothelial cells on erythroid cell differentiation. Our studies indicate that c-Myc has a context-dependent role in mediating the function of Apc in hematopoiesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖皮质激素(GC)耐药性仍然是小儿急性淋巴细胞白血病的临床挑战,其中对GC的反应是可靠的预后指标。为了确定GC抗性途径,我们进行了全基因组,以生存为基础,短发夹RNA筛选小鼠T细胞急性淋巴细胞白血病(T-ALL)细胞。筛选中鉴定的基因干扰环磷酸腺苷(cAMP)信号,并在GC抗性或复发性ALL患者中表达不足。cAMP激活Gnas基因的沉默干扰了GC诱导的基因表达,在体外和体内产生地塞米松抗性。我们证明了cAMP信号与地塞米松协同增强GC抗性人T-ALL细胞的细胞死亡。我们发现在T-ALL样品中表达的E类前列腺素受体4,并证明前列腺素E2(PGE2)增加细胞内cAMP,增强GC诱导的基因表达,并在体外和体内对人T-ALL样品对地塞米松敏感。这些发现将PGE2确定为复发性小儿T-ALL中GC再敏化的靶标。
    Glucocorticoid (GC) resistance remains a clinical challenge in pediatric acute lymphoblastic leukemia where response to GC is a reliable prognostic indicator. To identify GC resistance pathways, we conducted a genome-wide, survival-based, short hairpin RNA screen in murine T-cell acute lymphoblastic leukemia (T-ALL) cells. Genes identified in the screen interfere with cyclic adenosine monophosphate (cAMP) signaling and are underexpressed in GC-resistant or relapsed ALL patients. Silencing of the cAMP-activating Gnas gene interfered with GC-induced gene expression, resulting in dexamethasone resistance in vitro and in vivo. We demonstrate that cAMP signaling synergizes with dexamethasone to enhance cell death in GC-resistant human T-ALL cells. We find the E prostanoid receptor 4 expressed in T-ALL samples and demonstrate that prostaglandin E2 (PGE2) increases intracellular cAMP, potentiates GC-induced gene expression, and sensitizes human T-ALL samples to dexamethasone in vitro and in vivo. These findings identify PGE2 as a target for GC resensitization in relapsed pediatric T-ALL.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    中性粒细胞迁移到感染部位是控制和清除宿主内微生物生长的重要过程。因此,鉴定介导中性粒细胞趋化性的分子因素对于我们理解疾病的发病机理和保护性免疫机制至关重要。这里,我们描述了一个协议,使中性粒细胞募集从血液到体内真菌感染器官的分析,使用混合骨髓嵌合体和流式细胞术。该方法直接评估受体或胞内分子在真菌感染期间控制嗜中性粒细胞趋化性中的相对贡献,并且可以适应各种其他非真菌感染实验设置。
    Neutrophil migration to the site of infection is an essential process for the control and clearance of microbial growth within the host. Identifying the molecular factors that mediate neutrophil chemotaxis is therefore critical for our understanding of disease pathogenesis and the mechanisms underlying protective immunity. Here, we describe a protocol that enables analysis of neutrophil recruitment from the blood into fungal-infected organs in vivo, using mixed bone marrow chimeras and flow cytometry. This method directly assesses the relative contribution of a receptor or intracellular molecule in controlling neutrophil chemotaxis during fungal infection and can be adapted to a variety of other non-fungal infection experimental settings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    T cells increase cholesterol biosynthesis upon activation to generate substrates for cellular growth and proliferation. The ubiquitously expressed liver X receptor β (LXRβ) encoded by the Nr1h2 gene is a critical regulator of cholesterol homeostasis in mammalian cells; however, its cell-intrinsic role in T cell biology remains poorly understood. We report that ablation of LXRβ in T cells leads to spontaneous T cell activation and T lymphocytopenia. Unexpectedly, analysis of mixed bone marrow chimeric mice revealed a cell-autonomous survival defect that reduced the fitness of LXRβ-deficient effector T cells, suggesting that the heightened immune activation in mice harboring LXRβ-deficient T cells was due to impaired regulatory T (T reg) cell functionality. Indeed, we found that single-copy deletion of Nr1h2 in T reg cells disrupted activated T reg cell metabolism and fitness and resulted in early-onset fatal autoimmune disease. Our study demonstrated an indispensable requirement for T reg cell-intrinsic LXRβ function in immune homeostasis and provides a basis for immunological therapies through targeting of this receptor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Epigenetic regulation is essential for the maintenance of the hematopoietic system, and its deregulation is implicated in hematopoietic disorders. In this study, UTX, a demethylase for lysine 27 on histone H3 (H3K27) and a component of COMPASS-like and SWI/SNF complexes, played an essential role in the hematopoietic system by globally regulating aging-associated genes. Utx-deficient (UtxΔ/Δ) mice exhibited myeloid skewing with dysplasia, extramedullary hematopoiesis, impaired hematopoietic reconstituting ability, and increased susceptibility to leukemia, which are the hallmarks of hematopoietic aging. RNA-sequencing (RNA-seq) analysis revealed that Utx deficiency converted the gene expression profiles of young hematopoietic stem-progenitor cells (HSPCs) to those of aged HSPCs. Utx expression in hematopoietic stem cells declined with age, and UtxΔ/Δ HSPCs exhibited increased expression of an aging-associated marker, accumulation of reactive oxygen species, and impaired repair of DNA double-strand breaks. Pathway and chromatin immunoprecipitation analyses coupled with RNA-seq data indicated that UTX contributed to hematopoietic homeostasis mainly by maintaining the expression of genes downregulated with aging via demethylase-dependent and -independent epigenetic programming. Of note, comparison of pathway changes in UtxΔ/Δ HSPCs, aged muscle stem cells, aged fibroblasts, and aged induced neurons showed substantial overlap, strongly suggesting common aging mechanisms among different tissue stem cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号